

Report on Geotechnical Investigation

Proposed Hotel and Apartments

402 Macquarie Street, Liverpool NSW

Prepared for The Grand Liverpool Pty Ltd

Project 228571.00

24 June 2024

Document History

Details

Project No.	228571.00
Document Title	Report on geotechnical investigation
Site Address	402 Macquarie Street, Liverpool NSW
Report Prepared For	The Grand Liverpool Pty Ltd
Filename	228571.00.R.001.Rev0

Status and Review

Status	Prepared by	Reviewed by	Date issued
Revision 0	Luke James-Hall	Scott Easton	24 June 2024

Distribution of Copies

Status	Issued to
Revision 0	Ally Zhu and Ian Jordan, The Grand Liverpool Pty Ltd

The undersigned, on behalf of Douglas Partners Pty Ltd, confirm that this document and all attached drawings, logs and test results have been checked and reviewed for errors, omissions and inaccuracies.

Signature	Date	
Author	24 June 2024	
Reviewer	24 June 2024	

Table of Contents

				Page No.		
1.	Intro	oductio	n	1		
2.	Site Description, History and Previous Investigation					
3.	Des	ktop St	udy	2		
	3.1	Geolo	2 DGN	2		
	3.2	Hydro	 Dgeology	2		
4	Field	d Work		2		
1.	/ 1	Borok		2		
	42	Δουι	stic Televiewer	τ		
	- 1 .2	Groui	adwater Menitoring	/.		
	4.5	Dorm				
	4.4	Perm دم	Packer Testing	4 Д		
		4.4.2	Rising Head Tests			
5	Lab	oratory	Testing	6		
0.	5.1	Rock	·	6		
	5.2	Wate	r			
6	Geo	technic	cal Model	7		
о. П	000					
7.	Prop	oosed L	Jevelopment	8		
8.	Con	nments	5	8		
	8.1	Baser	ment Excavation Support	8		
		8.1.1	Surrounding Properties and Structures	8		
		8.1.2	New Shoring Wall	9		
		8.1.1	Existing Shoring Wall	9		
		8.1.2	Vertical Cuts (Hit and Miss Panels)			
		8.1.3	Earth Pressure Design			
		8.1.4	Rock Wedge Design			
		8.1.5	Ground Anchors	14		
		8.1.6	Passive Resistance			
	8.2	8.2 Stress Relief				
	8.3	Site P	Preparation and Earthworks	15		
		8.3.1	Excavaton Conditions			
		8.3.2	Dilapidation Surveys and Monitoring	16		
		8.3.3	Vibrations			
		8.3.4	Disposal of Excavated Material			

C	GROUNDED
E	XPERTISE

	8.4	Foundations17
	8.5	Groundwater17
9.	Refer	rences
10.	Limit	ations

- Appendix A: About This Report
- Appendix B: Drawings
- Appendix C: Borehole Logs
- Appendix D: Permeability Testing
- Appendix E: DIPS Analysis and Acoustic Televiewer Logs
- Appendix F: Laboratory Testing

Douglas Partners acknowledges Australia's First Peoples as the Traditional Owners of the Land and Sea on which we operate. We pay our respects to Elders past and present and to all Aboriginal and Torres Strait Islander peoples across the many communities in which we live, visit and work. We recognise and respect their ongoing cultural and spiritual connection to Country.

Report on Geotechnical Investigation Proposed Hotel and Apartments

402 Macquarie Street, Liverpool NSW

1. Introduction

This report prepared by Douglas Partners Pty Ltd (Douglas) presents the results of a geotechnical investigation undertaken for a proposed development at 402 Macquarie Street, Liverpool NSW (the site). The investigation was commissioned by The Grand Liverpool Pty Ltd and was undertaken in accordance with Douglas' proposal 225857.00.P.001.Rev1 dated 17 April 2024.

It is understood that the proposed hotel and residential apartment development includes 30storeys and six levels of basement. For the western part of the site, it is understood that the existing shoring wall and anchors are proposed to be reused, with the excavation extending a further three basements (~12 m) by vertical cuts. The eastern part of the site will need new shoring piles and the entire shoring system will require new temporary anchors.

The aim of the investigation was to assess the subsurface soil and groundwater conditions across the site in order to provide detailed geotechnical information to inform the development application, design and construction.

The investigation included the drilling of six boreholes, imaging of the open boreholes using an acoustic televiewer, water pressure (packer) testing within the open boreholes, installation of three groundwater monitoring wells, water sampling for offsite disposal and permeability (rising head) tests in the wells. The details of the field work are presented in this report, together with comments and recommendations related to the development.

This report must be read in conjunction with all appendices including the notes provided in Appendix A.

Douglas also recently undertook assessments of the existing shoring wall on the western part of the site, through numerical modelling (report Ref. 228571.00.R.002.Rev0) and downhole magnetic gradiometry to investigate the as-built pile toe level (report Ref. 22857.00.R.003.Rev0).

2. Site Description, History and Previous Investigation

It is understood that in late 2017 / early 2018 that the western two thirds of the site was subject to construction activities for a development that did not proceed. Three basement levels were excavated vertically and are supported by soldier piles with shotcrete infill panels and two rows of temporary tie-back anchors. The toe of the piled shoring wall appears to extend around 1.8-2.0 m below the third basement level (refer to Douglas report 22857.00.R.003.Rev0). This shoring wall was understood to have been designed to support a building which was previously located on the eastern part of the site. The eastern part of the site is now vacant, with the previous building(s) demolished in 2019.

Geotechnical investigations by others were conducted on the western two thirds of the site, which included ten cored boreholes drilled from the original ground surface and during excavation works. The boreholes were taken to maximum depths of 9 m to 12 m. Some groundwater monitoring wells were installed, with water levels measured at around 4-6 m depth below the existing ground surface.

3. Desktop Study

3.1 Geology

The Geological Survey of NSW Seamless Geology Web Map indicates that the site is underlain by Bringelly Shale. Bringelly Shale is a formation of sedimentary rocks which consist of claystone-siltstone (70%), laminite and sandstone (25%), coal and carbonaceous claystone (3%) and tuff (2%) (William and Airey 2004). Bringelly Shale is known to deteriorate if fresh material is exposed to repeated wetting and drying cycles.

Residual soils that originate from weathered Bringelly Shale are known to exhibit moderate to high shrink/swell behaviour (i.e. reactive), which is a result of mineral composition in combination with changes in the soil moisture content.

3.2 Hydrogeology

Based on the site's geology a fractured aquifer system is likely located within the secondary permeability of the Bringelly Shale.

Four registered groundwater wells are located within about 600 m of the site, however, no standing water level is shown recorded on the WaterNSW record sheets for these wells.

The Georges River is located over 600 m to the east/south-east of the site.

4. Field Work

The field work was undertaken in May 2024 and the methods and results are described in the following sections.

4.1 Boreholes

Six boreholes were drilled by truck and track mounted rigs using solid flight augers and rotary (wash-boring) through soils and then HQ wireline coring through the rock to obtain core samples. Standard penetration tests were undertaken at regular intervals within the soil profile.

Four boreholes were drilled in the east of the site (BH301, BH302, BH303 and BH304) and two were drilled in the lower western part of the site (BH405 and BH406).

Borehole locations are shown on Drawing 1 in Appendix B. Borehole coordinates and levels were surveyed using a differential GPS receiver, typically accurate to ±0.1 m.

The results of the boreholes are attached in Appendix C. Descriptive notes which should be read in conjunction with the borehole logs are attached in Appendix A.

The interpreted geological profile encountered from the four boreholes in the higher eastern part of the site can be summarised as follows:

- **FILL:** gravel to 0.15 m depth in BH301 and BH302, forming the driveway access pad.
- **Residual CLAY:** Generally firm to stiff, becoming very stiff to hard below about 0.5 1.0 m depth.
- **BRINGELLY SHALE:** Typically siltstone with beds of sandstone, and interbedded/ interlaminated siltstone and sandstone. In detail:
 - Very low to low strength siltstone below about 1.1 1.7 m depth.
 - Medium strength siltstone below about 2.9 5.0 m depth.
 - Beds of high to very high strength sandstone and high strength siltstone below about 7.5 12.8 m.
 - High strength interbedded/interlaminated siltstone/sandstone below about 19.0 m depth to the base of the boreholes at 22.1 28.1 m.

The interpreted geological profile encountered from the two boreholes in the lower western part of the site can be summarised as follows:

- **BRINGELLY SHALE:** Typically siltstone with beds of sandstone, and interbedded/ interlaminated siltstone and sandstone. In detail:
 - Medium or medium to high strength siltstone at the surface.
 - High to very high strength sandstone below about 8.1 m.
 - High strength interbedded/interlaminated siltstone/sandstone below about 10.2 12.8 m to the base of the boreholes at 14.1 20.1 m.

No free groundwater was measured in the boreholes whilst auger drilling and the use of water precluded the measurement of water levels during rotary wash boring or HQ coring.

4.2 Acoustic Televiewer

Acoustic teleview (ATV) logging was undertaken in each drilled borehole. ATV logging takes an image of the drilled borehole using high-resolution sound waves. The device is inserted into the base of the hole and takes measurements as the device is raised. The acoustic image can then be interpreted and provide information on defects within the rock, oriented to magnetic north. Douglas engaged a subcontractor to undertake the ATV logging.

Individual ATV Interpreted Features Reports are attached in Appendix E.

Douglas then processed the interpreted data as a single data set using the program DIPS, to identify any joint 'sets' and to statistically assess the risk of rock wedges forming on the four sides of the proposed excavation. The assessment indicates that the south-west excavation face (Carey Street) has a higher probability of wedge failures than the remaining other three faces.

The results from the DIPS analysis are included in Appendix E.

4.3 Groundwater Monitoring

Groundwater monitoring wells were installed within boreholes BH301, BH304 and BH405 at the completion of drilling and ATV imaging. Within the holes, Class 18 machine slotted PVC pipe was installed to the base of the holes and surrounded with filter gravel. The top 2-4 m of the well was unslotted and was sealed against the borehole walls using bentonite. Well installation logs are attached in Appendix C.

The remaining three boreholes (BH302, BH303 and BH406) were left open and the water level measured on 24 May in these holes and the wells, approximately 2.5 – 3 weeks after the wells were installed. BH303 had collapsed and no water measurement could be obtained on this date. Before the packer test (see Section 4.4.1) in borehole BH303, groundwater was measured at 9.7 m depth on 3 May 2024 (the borehole had been drilled to completion depth of 24.15 m the previous day).

Automatic loggers were installed within each well taking readings every 1-2 hours so that long term data can be collected at a future date.

The results of water level measurements in the wells and open boreholes are summarised in Table 1.

	Surface	Wel	Measured Water		
Borehole	(RL, m AHD)	Section Length (RL, m AHD)	Lithology	Level on 24 May 2024 (RL, m AHD)	
BH301	27.3	23.15 to -0.85	Siltstone, Sandstone	18.1	
BH302	27.9	N/A	N/A	17.7	
BH303	27.6	N/A	N/A	17.9*	
BH304	27.5	23.36 to 5.36	Siltstone, Sandstone	16.6	
BH405	18.7	16.60 to 4.60	Siltstone, Sandstone	16.7	
BH406	18.9	N/A	N/A	16.4	

Table 1: Monitoring wells overview

Note: * water measurement on 3 May 2024 after hole was drilled on 2 May 2024 and prior to packer testing

4.4 **Permeability Testing**

4.4.1 Packer Testing

Packer testing was conducted in boreholes BH301, BH302 and BH303 to assess the Lugeon value of the rock mass within the hole length tested. The testing was in accordance with industry standard test procedures. Testing was carried out by the Field Engineers using equipment supplied by the drilling contractor. Prior to testing the boreholes were thoroughly flushed with clean water.

The packer tests were undertaken in each borehole within the siltstone and sandstone bedrock, with the top of the tested section at around 9 – 14 m depth and the bottom of the tested section at around 24 – 28 m (base of the drilled borehole). The testing procedure involved the use of a single hydraulic packer system to systematically test the hole section in a down stage manner. The water was delivered to the packer through the in-place HQ rods with an internal diameter of 76 mm. The rate of water flow out of the sealed off section of the borehole was measured using a flow meter, and cross checked with volume flows from a calibrated drum. Typically, the flow was measured over 15-minute intervals at three different pressures, firstly in ascending order followed by descending order. The maximum pressure used did not exceed the vertical rock pressure at the test section depth (calculated using an assumed average density of rock of 22 kN/m³).

The results were interpreted using both Houlsby and Burgess methods. Houlsby's method involves selecting a representative Lugeon value based on the interpreted flow pattern. Burgess' method involves using a line of best fit through the measured data, projecting that line through the origin and calculating the Lugeon value based on the estimated water loss at 1,000 kPa.

The packer test records are presented in Appendix D, with the assessed Lugeon value and approximate permeability of the tested section presented in Table 2.

Borehole	Packer Test Section Length in Borehole	Assessed Lugeon Value (I/m/min)		Interpreted Hydraulic Permeability Range	
	(m)	Houlsby	Burgess	(m/sec)	
BH301	8.70 – 28.15	2	3	1.5 – 2.7 x10 ⁻⁷	
BH302	9.50 – 25.30	0.4	0.5	4.1 – 8.0 x10 ⁻⁸	
BH303	14.00 – 24.15	<0.1	<0.1	3.6 – 6.5 x10 ⁻⁹	

Table 2: Summary of Packer Tests

4.4.2 **Rising and Falling Head Tests**

Rising and/or Falling head permeability tests were undertaken in the monitoring wells whereby a 'slug' was either inserted into or extracted from the water column to cause the water level to either rise or fall as a result (BH304 and BH405) or the water within the wells was pumped out and the rate of water recharge was measured (BH301). Measurements were then taken as the water level returned to its original level. The data was measured using an automated logger suspended towards the base of the well, taking measurements every second.

Rising and falling head records and analysis sheets are attached in Appendix D. The results sheets include the interpreted hydraulic conductivity of the rock mass using the methods of Hvorslev (1951). The results of the rising and falling head tests are summarised in Table 3.

24/-11	Interpreted Hydraulic Permeability (Hvorslev) (m/sec)				
wei	Pumped Rising Head	Slug Rising Head	Slug Falling Head		
BH301	9.4 x 10 ⁻⁸	-	-		
BH304	2.8 x 10 ⁻⁶	1.1 x 10 ⁻⁵	1.1 x 10 ⁻⁵		
BH405	1.3 x 10 ⁻⁶	1.1 x 10 ⁻⁶	1.0 x 10 ⁻⁶		

Table 3: Summary of Rising and Falling Head Tests

5. Laboratory Testing

5.1 **Rock**

Over 110 rock point load index tests ($Is_{(50)}$) were carried out on the recovered rock core at regular intervals. The results are shown on the respective borehole logs and are graphically presented in Figure 1.

Figure 1: Point Load Index Results

5.2 Water

Samples of groundwater from the three installed monitoring wells were tested for a range of contaminants. The laboratory reports are included in Appendix F. These results will be discussed in the dewatering management plan that Douglas will be preparing (report 228571.00.R.004).

6. Geotechnical Model

Interpreted geotechnical cross-sections through the site, are shown on Drawings 2 and 3 in Appendix B. These sections include the current boreholes and the previous boreholes drilled by others. Strata Units have been interpreted on these sections, with the rock classified in accordance with the procedures given in Pells et al (2019), which uses a combination of rock strength, fracture spacing and allowable defects to divide the rock into five classes.

The geotechnical model for the site is summarised in Table 4.

Ctrata		Level to top of Strata (m, AHD)						
Strata	BH301	BH302	BH303	BH304	BH405	BH406		
Fill	27.3	27.9	-	-	-	-		
Clay st	27.2	27.8	27.6	27.5	-	-		
Clay vst-h	26.6	26.9	27.0	27.0	-	-		
Siltstone VL-L	26.1	26.2	26.5	26.4	-	-		
Siltstone M	24.5	22.9	24.2	22.7	-	-		
Sandstone H-VH	19.8	19.5	20.1	14.7	-	-		
Siltstone M	19.1	18.9	18.6	-	18.7	18.9		
Sandstone H-VH	14.0	12.9	13.5	-	-	-		
Siltstone M	12.0	11.9	11.6	11.9	-	-		
Sandstone H-VH	11.1	10.9	10.6	11.0	10.9	10.7		
Siltstone/Sandstone H	8.8	8.7	8.3	8.5	8.5	6.1		
End of hole	-0.8	2.6	3.5	5.4	4.6	-1.2		

Table 4: Geotechnical Model

NOTE: st = stiff, vst = very stiff, h = hard, VL = very low strength, L = low strength, M = medium strength, H = high strength, VH = very high strength

Groundwater was encountered between RL 15.7 m and RL 17.9 m, typically being at a higher level in the east of the site and a lower level in the west of the site. The groundwater table is therefore expected to be some 6 m to 10 m above the bulk excavation level.

7. Proposed Development

The proposed development consists of a hotel and residential apartment building of 30-storeys and six levels of basement. The basement excavation will extend to depths of around 19 m in the higher eastern part of the site and to about 10 m below the current excavation level in the lower western part of the site.

For the lower western part of the site, it is understood that the existing shoring wall is proposed to be reused, with the excavation extending below this wall using vertical cuts in the rock. The eastern part of the site will need new shoring piles and the entire shoring system will require new temporary anchors.

Details on the specific column working loads have not been confirmed but given the building height they will be relatively high.

8. Comments

8.1 Basement Excavation Support

The proposed excavation will extend to about 19 m depth in the higher eastern part of the site and to about 10 m below the current excavation level in the lower western part of the site. The excavation is proposed to extend up to site boundaries and will therefore need to be cut vertically. The vertical excavation will require both temporary and permanent lateral support to provide stability to surrounding structures and property.

For the lower western part of the site, existing shoring is already installed. This shoring wall consists of 600 mm diameter soldier piles at 2.0 m spacing (centre to centre), restrained by two rows of temporary tie back anchors. Douglas investigated the toe level of the piles (Report Ref. 22857.00.R.003.Rev0), with the results of that investigation indicating that the toe level is at about RL 17.0 m. This puts the toe of the piles within siltstone of medium strength, some 3 m to 6 m above high to very high strength sandstone/siltstone and about 7 m to 9 m above the proposed bulk excavation level. Douglas proposes that the western part of the site be excavated vertically below the existing shoring wall following the detailed methodology presented in Section 8.1.2. The basement structure will need to be designed to support the vertical rock face and the existing shoring wall in the long term.

It is understood that for the higher eastern part of the site that a new shoring wall is to be installed, consisting of soldier piles with shotcrete infill panels temporarily restrained by tie-back anchors during construction and the basement floor slabs in the long term.

8.1.1 Surrounding Properties and Structures

The neighbouring properties to the south and south-east (No. 1 and No. 5 Charles Street) do not appear to have any basements. However, the neighbouring property to the east (No. 170 Terminus Street) is understood to have two basement levels. An investigation should be undertaken to determine the nature and condition of the foundations and their loads. The proposed shoring system may need to be modified to ensure support to this adjacent building, depending on the findings of the investigation. This could include major underpinning, anchors or leaving a

permanent rock bench if adverse conditions are encountered. It is assumed that the permanent structure will support the shored section of the excavation in the long-term.

Macquarie Street and Carey Street border the site to the north and west, respectively. Macquarie Street is a NSW state asset and as such approvals will need to be sought from Transport for NSW (TfNSW). Reference should be made to TfNSW Geotechnology Technical Direction (GTD) 2020/001 with regards to excavation adjacent to Transport for NSW Infrastructure.

Douglas notes that the existing shoring in the western part of the site does contain three inclinometers, which would have been installed for the purposes of monitoring lateral movement of the shoring wall adjacent to Macquarie Street. If it has not commenced already, it is suggested that survey monitoring of the shoring wall and inclinometer readings in the existing inclinometers should commence with minimal delay. The existing inclinometers may not extend to below the proposed basement and will therefore provide limited value for future excavations but can be used to assess current stability until new works commence.

8.1.2 New Shoring Wall

The new shoring wall should be designed and constructed similar to the existing wall in the lower western part of the site. The wall should therefore consist of around 600 mm diameter soldier piles at approximate 2.0 m spacings, with shotcrete infill panels and temporarily restrained by three to four rows of tie-back anchors. Due to the potential for unstable wedges to form in the Bringelly Shale rock, the shoring piles should be extended to below the bulk excavation level. If the shoring piles are to terminate above the bulk level, then the toe of each pile will need a Bolt/anchor and the vertical rock cuts beneath should be supported as per the methodology set out in Section 8.1.2.

The shoring wall will need to be designed to support earth pressures (refer to Section 8.1.4), the building to the east (No. 170 Terminus Street) and surcharge loads (e.g. Macquarie Street). The design should also consider the possibility that unfavourable joints in the Bringelly Shale rock will daylight near the base of the excavation, leading to wedges of rock which need to be supported by the temporary and permanent retaining structures (refer to Section 8.1.5).

8.1.1 Existing Shoring Wall

The existing shoring wall in the west of the site is proposed to be retained and incorporated into the new shoring system.

The temporary 'tie back 'anchors in this shoring wall do not appear to have been installed with any form of corrosion protection. As such, the integrity of the anchors is presently unknown.

Douglas highly recommends that the existing anchors be ignored as part of the new shoring system design. Douglas would not be able to verify the capacity of the anchors to sustain load even if restressing or 'lift off' testing was undertaken. Therefore, new anchors will need to be installed prior to any excavation below the current level of RL 18.9 m. It is also recommended that a 'toe' anchor be installed before any excavation extends below RL 17.5 m depth.

The shoring wall itself was likely designed to be incorporated into the final structure and thus would have adequate cover to reinforcement steel. The structural engineer should comment on re-use of the existing shoring piles.

8.1.2 Vertical Cuts (Hit and Miss Panels)

In the western part of the site, vertical excavation is proposed beneath the existing shoring wall. Douglas recommends that vertical cuts in the siltstone/sandstone be undertaken in a 'hit and miss' underpinning panel sequence under close supervision by an experienced geotechnical engineer or engineering geologist.

The hit and miss vertical faces will need to be supported by shotcrete and mesh and any unfavourable rock defects (e.g. wedges) restrained by temporary anchors/bolts.

Figure 2: Preliminary 'Hit and Miss' Panel Sequence (Elevation)

The following preliminary excavation and construction sequence is recommended to reduce the geotechnical risks associated with underpinning the shoring wall. Refer to Figure 2 for the proposed hit and miss panel arrangement.

- Step 1.1: Excavate the <u>first</u> row of 'A' panels, which are to be 1.5 m in height and 4.0 m wide. This will result in an excavation level of about RL 17.4 m. **Hold Point – geotechnical engineer to inspect the exposed rock face between the shoring piles.**
- Step 1.2: Construct shotcrete infill panels, with mesh tied into the piles.
- Step 1.3: Locally excavate in front of one pile at a time (about 0.5 m of excavation) and install the toe anchor/bolt in each pile.
- Step 1.4: Excavate the first row of 'B' panels, which are to be 1.5 m in height and 6.0 m wide. This will result in an excavation level of about RL 17.4 m. Hold Point – geotechnical engineer to inspect the exposed rock face between the shoring piles.

- Step 1.5 Place drainage strips and construct shotcrete infill panels, with mesh tied into the piles.
- Step 1.6: Locally excavate in front of one pile at a time (about 0.5 m of excavation) and install the toe anchor/bolt in each pile.
- Step 2.1: Excavation the <u>second</u> row of 'A' panels, which are 1.5 m high and 4.0 m wide. This will result in an excavation level of about RL 15.9 m and will now be below the toe of the shoring piles. Hold Point geotechnical engineer to inspect the exposed rock face and mark out locations of anchors/bolts.
- Step 2.2: Drill anchor holes, install bolts/anchors (refer to Section 8.1.4 on rock wedge design). Place drainage strips, mesh and construct shotcrete panels. Tension bolts/anchors.
- Step 2.3: Excavation the second row of 'B' panels, which are 1.5 m high and 4.0 m wide. **Hold Point – geotechnical engineer to inspect the exposed rock face and mark out locations of anchors/bolts.**
- Step 2.4: Drill anchor holes, install bolts/anchors. Place drainage strips, mesh and construct shotcrete panels. Tension bolts/anchors.
- Step 3.1: Excavate the <u>third</u> row of 'A' panels, which are 1.5 m high but can now be wider at 6.0 m width, as it is expected that more competent Class II rock will now be exposed. This will result in an excavation level of about RL 14.4 m. **Hold Point geotechnical engineer to inspect the exposed rock face and mark out locations of anchors/bolts.**
- Step 3.2: Drill anchor holes, install bolts/anchors. Place drainage strips, mesh and construct shotcrete panels. Tension bolts/anchors.
- Step 3.3: Excavate the third row of 'B' panels, which are 1.5 m high and 8.0 m wide. Hold Point

 geotechnical engineer to inspect the exposed rock face and mark out locations of
 anchors/bolts.
- Step 3.4: Drill anchor holes, install bolts/anchors. Place drainage strips, mesh and construct shotcrete panels. Tension bolts/anchors.
- Step 4.1: Excavate the <u>fourth</u> row of 'A' panels, which are now 2.4 m high and 6.0 m wide, as it is expected that more competent Class II-I rock will now be exposed. This will result in an excavation level of about RL 12.0 m. Hold Point geotechnical engineer to inspect the exposed rock face and mark out locations of anchors/bolts.
- Step 4.2: Drill anchor holes, install bolts/anchors. Place drainage strips, mesh and construct shotcrete panels. Tension bolts/anchors.
- Step 4.3: Excavate the fourth row of 'B' panels, which are 2.4 m high and 8.0 m wide. Hold Point geotechnical engineer to inspect the exposed rock face and mark out locations of anchors/bolts.
- Step 4.4: Drill anchor holes, install bolts/anchors. Place drainage strips, mesh and construct shotcrete panels. Tension bolts/anchors.
- Step 5.1: Excavate the <u>fifth and final</u> row of 'A' panels, which are 3.0 m high and 6.0 m wide. This will result in an excavation level of about RL 9.0 m. **Hold Point – geotechnical engineer to inspect the exposed rock face and mark out locations of anchors/bolts.**
- Step 5.2: Drill anchor holes, install bolts/anchors. Place drainage strips, mesh and construct shotcrete panels. Tension bolts/anchors.

- Step 5.3: Excavation the fourth row of 'B' panels, which are 3.0 m high and 8.0 m wide. Hold Point – geotechnical engineer to inspect the exposed rock face and mark out locations of anchors/bolts.
- Step 5.4: Drill anchor holes, install bolts/anchors. Place drainage strips, mesh and construct shotcrete panels. Tension bolts/anchors.

Note: If the shotcrete panels are being constructed without restraint from the bolts/anchors under tension, then the panels will need to have 'footings' that extend down to the rock at the current excavation level, otherwise the shotcrete panel will slide off the rock face.

As part of the underpinning methodology, the structural engineer needs to:

- Nominate the required thickness and mesh for the shotcrete panels.
- Nominate the structural connection details of the new shotcrete panels into the piles.
- Nominate the connection details of the anchors/bolts and mesh. •
- Consider the bearing pressure that the anchor plates will impose on the concrete piles (e.g. . chisel out a flat area for the anchor plate).
- Consider that the anchor plate needs to be placed perpendicular to the strands and therefore may need to specify a purposely made chair for this.

Identifying adverse joints in the rock is critical to this methodology. This approach is suggested only on the basis that Douglas Partners is engaged to carry out inspection and mapping of the joints at the HOLD POINTS nominated above. Douglas would take no responsibility for work and inspections carried out by the contractor and their geotechnical consultant as there is no control on the experience of the geotechnical consultant inspecting the rock and jointing.

It is important to note that the above methodology is preliminary and is a recommendation for the civil contractor to adopt for the vertical excavation beneath the existing shoring piles.

The methodology should not be used as part of a specification, without review and agreement by Douglas as the preliminary methodology has been written as advice and opinion rather than instructions for construction.

8.1.3 **Earth Pressure Design**

Preliminary design for lateral earth pressures for a multi-anchored wall system may be based on a uniform rectangular earth pressure distribution. A uniform lateral earth pressure could be adopted for the retaining wall of 4H kPa (H = Height (m) to be retained from surface to the top of medium to high or high strength rock or 6H (where lateral movements are to be reduced, such as to the neighbour to the east at No. 170 Terminus Street). Additional lateral pressures due to surcharge loadings behind the wall and hydrostatic pressures (as appropriate) should be allowed for within the structural design.

Shoring will also need to be designed to support earth pressures and surcharge loads. The final or detailed design of retaining walls are normally undertaken using interactive computer programs such as WALLAP or PLAXIS, which can take due regard of soil-structure interaction during the progressive stages of wall construction, anchoring and bulk excavation. Plaxis or similar is suggested for this site so that ground movements behind the wall can also be assessed.

Alternatively, design for lateral earth pressures may be based on the parameters given in Table 5. For situations where only minor lateral movements are acceptable, such as the support of sensitive structures or services, an increased pressure based on "at-rest" conditions should be adopted, depending on the level of restraint required. A uniform pressure of 10 kPa should be adopted for the support of low to medium strength or stronger rock between soldier piles and/or anchors to account for minor wedges that may become mobilised.

Material	Unit Weight	Earth P Coeff	ressure icient	Effective Cohesion	Effective Friction
Material	(kN/m ³)	Active (K _a)	At Rest (K₀)	c' (kPa)	Angle (Degrees)
FILL	20	0.35	0.6	1	30
Residual CLAY	21	0.3	0.5	5	27
Very Low to Low Strength SILTSTONE	23	0.2	0.25	20	30
Medium Strength SILTSTONE	24	10 kPa uniform	10 kPa uniform	50	33
High Strength SILTSTONE	24	0*	0*	100	36
High to Very Vigh Strength SANDSTONE	24	0*	0*	300	45

Table 5: Recommended Design Parameters for Shoring Design

Note: * Subject to jointing assessment by experienced Geotechnical Engineer/Engineering Geologist

All surcharge loads should be allowed for in the shoring design including building footings, inclined slopes behind the wall, traffic and construction related activities.

Shoring walls should be designed for full hydrostatic pressures unless drainage of the ground behind impermeable walls can be provided. Drainage could comprise 150 mm wide strip drains pinned to the face at 1 m to 2 m centres behind shotcrete in-fill panels.

8.1.4 Rock Wedge Design

Based on the DIPS analysis of the rock defects identified from the ATV logging in the boreholes (Section 4.2), Douglas recommends that the design of temporary and permanent support consider the possibility that 55 degree joints (above horizontal) in the Bringelly Shale rock will daylight near the base of the shoring wall leading to wedges of rock which need to be supported by the temporary and permanent retaining structures.

The support system would typically comprise anchors spaced at 2 m to 3 m centres over the rock face, through the shoring piles (where they exist) or directly onto the rock face with face plates. These anchors should have their bond lengths formed in rock behind a line projected up at 55 degrees from the base of the shoring.

As a guide, it is suggested that the anchor capacity (working load) of the support system should be designed for an anchor force per unit width of 4.2 H^2 (kN), where H is the height of the

excavation in metres. This approximation of the anchor force required to support a 55-degree wedge is based on an anchor inclination of 10 degrees below horizontal, an average bulk weight of 23 kN/m³, and friction angle of 30 degrees (with zero cohesion) along the failure plane. Given that there is a very low probability that a joint would run the full length and height of the excavation it suggested that this aspect of the design may be carried out for a factor of safety of 1.0.

For steeper anchors, the anchor capacity would need to be increased as per Table 6.

Angle of Installation (below horizontal)	Required Percentage Increase in Capacity	
10°	0%	
20°	14%	
30°	27%	

Table 6: Increased Capacity Requirement for Steeper Anchors

Inspection of the cut faces during the excavation phase should be carried out by an experienced Engineering Geologist or Geotechnical Engineer to check the adequacy of the design. The mapping of all actual joints and faults will also allow the re-calculation of the horizontal force required to restrain the actual joint wedges present for final support design, for the permanent basement structure. Obviously this approach to permanent support design will require considerable interaction between the Structural and Geotechnical Engineers.

8.1.5 Ground Anchors

The design of temporary and permanent ground anchors for the support of excavations and/or shoring systems may be carried out on the basis of the maximum allowable bond stresses given in Table 7.

Material Description	Maximum Allowable Bond Stress (kPa)	Maximum Ultimate Bond Stress (kPa)
Medium Strength SILTSTONE	400	800
High Strength SILTSTONE	500	1000
High to Very Vigh Strength SANDSTONE	1000	2000

Table 7: Allowable Bond Stresses for Rock Anchor Design

The parameters given in Table 10 assume that the drilled holes are clean and adequately flushed. The anchors should be bonded behind a line drawn up at 55 degrees from the base of the shoring, and "lift-off" tests should be carried out to confirm the anchor capacities. It is suggested that ground anchors should be proof loaded to 125% of the design working load and locked-off at no higher than 80% of the working load.

It is anticipated that the building will support the basement excavation over the long term and therefore the ground anchors are expected to be temporary only. The use of permanent anchors would require careful attention to corrosion protection including full column grouting and the

use of an internal corrugated sheathing over the full length of the anchor. A detailed specification would need to be prepared for the installation and stressing of permanent anchors.

8.1.6 **Passive Resistance**

Passive resistance for shoring piles founded below the base of the bulk excavation (including allowance for services or footings) may be based on an ultimate passive restraint value of 8,000 kPa for high or high to very high strength siltstone or sandstone. This ultimate value will need to incorporate a factor of safety to limit the wall movement that is required to mobilise the full passive resistance. The top 0.5 m of the socket should be ignored due to possible disturbance (e.g. over-excavation) and tolerance effects. The passive restraint adopted in the design must not exceed the shear capacity of the pile.

8.2 Stress Relief

Locked in stresses are present in the rock and during excavation these stresses will be released, which will result in lateral movement of the rock. These lateral movements may cause cracking of adjacent buildings and the potential movement of roads. They may also cause increases in the loads on anchors.

Based on previous experience, lateral movements of the edge of the excavation in the order of 0.5 to 1 mm per metre depth of rock excavation can be expected. For the proposed excavation to 19 m depth (about 10-12 m of rock of medium strength or greater), movement due to stress relief could be up to about 12 mm. Maximum movement will occur towards the centre of the boundaries.

Consideration should be given to the locations of internal columns, connections with perimeter walls and other design issues, so that the potential stress relief movements as a result of construction or do not affect the building, or the neighbouring building to the east (No. 170 Terminus Street).

8.3 Site Preparation and Earthworks

8.3.1 Excavaton Conditions

It is anticipated that excavation for the basement will require the removal of shallow filling, mostly clayey soils and bedrock ranging in strength from very low to very high strength.

Excavation of soil and very low to low strength rock should be achievable using conventional earthmoving equipment. It is anticipated that excavation of medium to very high strength rock will require heavy ripping with a large bulldozer, together with the use of hydraulic rock breakers for effective removal of this material. Productivity in slightly fractured and unbroken, high and very strength rock may be very low. Excavation contractors can inspect rock core at the Douglas office and should make their own assessment of productivity and equipment required.

The detailed excavation for footings, services and lift pits below the bulk level will generally require the use of a rotary rock saw, grinder, or hydraulic rock hammers.

Rock saws or grinders may also need to be used to reduce vibrations near adjacent structures to reduce the potential for causing damage to such structures.

8.3.2 Dilapidation Surveys and Monitoring

Dilapidation surveys should be carried out on surrounding buildings and pavements that may be affected by the basement construction. The dilapidation surveys should be undertaken before the commencement of any excavation work in order to document any existing defects so that any claims for damage due to construction related activities can be accurately assessed.

In accordance with TfNSW GTD 2020/001, monitoring of the excavation during construction will be required. This should be undertaken through survey targets on the shoring wall capping beam (both new and old walls) and at about 5 m and 10 m below the capping beam. The targets should be spaced along the walls at a spacing of no greater than 10 m. Furthermore, at least three inclinometers will need to be installed along the Macquarie Street frontage to monitor wall movements from the ground level to below the bulk level. Inclinometers are typically installed within shoring piles (where they are founded below the bulk level) or within boreholes (drilled in footpath adjacent to where the existing shoring wall is located.

8.3.3 Vibrations

During excavation, it will be necessary to use appropriate methods and equipment to keep ground vibrations at adjacent buildings and structures within acceptable limits. The level of acceptable vibration is dependent on various factors including the type of building structure, its structural condition, the frequency range of vibrations produced by the construction equipment, the natural frequency of the building and the vibration transmitting medium.

Ground vibration can be strongly perceptible to humans at levels above 2.5 mm/s component peak particle velocity (PPVi). This is generally much lower than the vibration levels required to cause structural damage to buildings. The Australian Standard AS2670.2-1990 "Evaluation of human exposure to whole-body vibrations – continuous and shock induced vibrations in buildings (1-80 Hz)" indicates an acceptable day time limit of 8 mm/s component PPVi for human comfort.

Based on the experience of DP and reference to AS2670, it is suggested that a maximum component PPVi of 8 mm/sec (applicable at the foundation level of existing buildings) be employed at this site to reduce the risk of causing architectural damage to surrounding buildings.

As the magnitude of vibration transmission is site specific, it is recommended that a vibration trial be undertaken at the commencement of rock excavation. The trial may indicate that smaller or different types of excavation equipment should be used for bulk (or detailed) excavation purposes.

8.3.4 **Disposal of Excavated Material**

All excavated materials will need to be disposed of in accordance with the provisions of the current legislation and guidelines including the *Waste Classification Guidelines* (EPA, 2014). This includes filling and natural materials that may be removed from the site. Accordingly, environmental testing will need to be carried out to classify spoil prior to transport from the site.

8.4 Foundations

The bulk excavation level is expected to expose high and high to very high strength interbedded siltstone and sandstone. The higher Basement B06A level (RL 10.4 m) could expose a thin layer of medium strength siltstone. It is recommended that all pad footings supporting the structure be founded on rock of similar strength, thus if medium strength siltstone is exposed in the base of a pad footing, the footing should be deepened until at least high strength siltstone/sandstone is encountered.

Footings should be founded below a 45 degree line from any adjacent excavations. If footings are to be founded near the edge of vertical cuts in competent high strength sandstone then this will need to be assessed on a case by case basis and the bearing pressure should be reduced to say 2000 kPa. If adverse joints are found below the footing then underpinning may be required.

Recommended maximum pressures for the various rock strata are presented in Table 8. For piles required to resist uplift forces, shaft adhesion values for uplift (tension) may be taken as being equal to 70% of the values for compression.

	Maximum Allowable Pressure		Maximum Ultimate Pressure	
Strata	End Bearing (kPa)	Shaft Adhesion (Compression) (kPa)	End Bearing (kPa)	Shaft Adhesion (Compression) (kPa)
High and high to very high strength siltstone/sandstone	8,000	600	80,000	1000

Table 8: Recommended Design Parameters for Foundation Design

Foundations proportioned on the basis of the allowable bearing pressures in Table 8 would be expected to experience total settlements of less than 1% of the footing width under the applied working load, with differential settlements between adjacent columns expected to be less than half of this value.

All footings/piles should be inspected by a geotechnical engineer to confirm that foundation conditions are suitable for the design parameters. Spoon testing should be carried out in at least one third of pad footings which are designed for an allowable end bearing pressure of 3500 kPa or greater. Spoon testing generally involves drilling a 50 mm diameter hole below the base of the footing, to a depth of 1.5 times the footing width, followed by testing to check for the presence of weak/clay bands. If weak seams are detected then footings may need to be taken deeper to reach better foundation material.

8.5 Groundwater

Groundwater has been measured within the monitoring wells on the site at levels of between RL 16.4 m and RL 18.1 m. The proposed basement levels of RL 9.0 – 10.4 m will extend many metres below the water levels measured. Water seepage should be expected through joints and bedding planes within the rock mass.

The Packer testing in the three boreholes and the rising/falling head tests in BH301 indicated hydraulic conductivities of the rock strata of between 1.5×10^{-7} m/sec to 6.5×10^{-9} m/sec which is relatively low permeability and would typically be associated with relatively minor inflows. The rising and falling head tests in BH304 and BH405 indicated hydraulic conductivities of the rock strata of between 1.1×10^{-5} m/sec to 1.1×10^{-6} m/sec m/sec, which is relatively high permeability (for the Class III-I rock) and could be associated with higher localised inflows. With reference to Pells (2019), the mass hydraulic conductivity of Class III to Class I sandstone/siltstone typically ranges between about 5×10^{-7} to 1×10^{-8} m/sec.

Numerical modelling will be required to assess likely inflow volumes to the basement. The inflow volume will inform basement design which should consider serviceability and long-term groundwater management. Douglas is undertaking groundwater modelling for the proposed basement excavation, the results of which will be reported in the future.

From a geotechnical point of view, it is considered that a drained basement is feasible without any significant impact to surrounding groundwater systems or property. This will be subject to review and approval from Council and relevant authorities. Typically if predicted inflows are less than 3ML/year then there is an exemption against a Water Access License and it is generally more acceptable to WaterNSW/DPE to approve a drained basement. If inflows are more than 3 ML/year then a Water Access License with water share allocation is required. It is still possible to get a drained basement approved for more than 3 ML/year, but it can be more difficult.

For this site and given the size/depth of the basement it is likely that inflows will be more than 3 ML/year, particularly if the higher permeability values obtained from some tests are considered. Possibly grouting could be used to control inflows if required but this can be difficult.

If a drained basement slab is not permitted, or it is preferred to eliminate issues associated with long term removal of groundwater, then a water-tight 'tanked' basement will be required for the permanent basement structure. A tanked basement would need to be designed to resist uplift forces associated with hydrostatic groundwater pressures which will be significant for this site.

Disposal of any water off site will need to be in accordance with council and EPA regulations. The water chemistry testing (Section 5.2) was undertaken for the purposes of informing offsite disposal of water.

9. References

Bertuzzi, R. (2014). "Sydney sandstone and shale parameters for tunnel design." Australian Geomechanics 49(1): 1-40.

Bertuzzi, R. and P. J. Pells (2002). "Geotechnical parameters of Sydney sandstone and shale." Australian Geomechanics: Journal and News of the Australian Geomechanics Society 37(5): 41.

Hvorslev, M. (1951) "Time Lag and Soil Permeability in Ground-Water Observations." Waterways Experiment Station Corps of Engineers, U.S. Army, Vicksburg.

Pells, P., Mostyn, G., Bertuzzi, R. and Wong, P. (2019). "Classification of Sandstone and Shales in the Sydney Region: A Forty Year Review." Australian Geomechanics: Journal and News of the Australian Geomechanics Society 54(2):

Pells, P. (1999). "State of practice for the design of socketed piles in rock." Proceedings of the 8th Australia New Zealand Conference on Geomechanics: Consolidating Knowledge.

William, E. and D. Airey (2004). "Index Properties and the Engineering Behaviour of Bringelly Shale " Australian Geomechanics 39.

10. Limitations

Douglas Partners Pty Ltd (Douglas) has prepared this report for this project at 402 Macquarie Street, Liverpool NSW in accordance with Douglas' proposal 225857.00.P.001.Rev1 dated 17 April 2024, and acceptance received from Ian Jordan from The Grand Liverpool Pty Ltd. The work was carried out under Douglas' Engagement Terms. This report is provided for the exclusive use of The Grand Liverpool Pty Ltd for this project only and for the purposes as described in the report. It should not be used by or relied upon for other projects or purposes on the same or other sites, or by a third party. Any party so relying upon this report beyond its exclusive use and purpose as stated above, and without the express written consent of Douglas, does so entirely at its own risk and without recourse to Douglas for any loss or damage. In preparing this report Douglas has necessarily relied upon information provided by the client and/or their agents.

The results provided in the report are indicative of the sub-surface conditions on the site only at the specific sampling and/or testing locations, and then only to the depths investigated and at the time the work was carried out. Sub-surface conditions can change abruptly due to variable geological processes and also as a result of human influences. Such changes may occur after Douglas' field testing has been completed.

Douglas' advice is based upon the conditions encountered during this current and previous investigations. The accuracy of the advice provided by Douglas in this report may be affected by undetected variations in ground conditions across the site between and beyond the sampling and/or testing locations. The advice may also be limited by budget constraints imposed by others or by site accessibility.

The assessment of atypical safety hazards arising from this advice is restricted to the geotechnical and groundwater components set out in this report and based on known project conditions and stated design advice and assumptions. While some recommendations for safe controls may be provided, detailed 'safety in design' assessment is outside the current scope of this report and requires additional project data and assessment.

This report must be read in conjunction with all of the attached and should be kept in its entirety without separation of individual pages or sections. Douglas cannot be held responsible for interpretations or conclusions made by others unless they are supported by an expressed statement, interpretation, outcome or conclusion stated in this report.

This report, or sections from this report, should not be used as part of a specification for a project, without review and agreement by Douglas. This is because this report has been written as advice and opinion rather than instructions for construction.

This report provides specialist advice only and no part of it is considered a Regulated Design under the Design and Building Practitioner Act 2020 (NSW).

The scope of work for this investigation/report did not include the assessment of surface or subsurface materials or groundwater for contaminants, within or adjacent to the site. Should evidence of fill of unknown origin be noted in the report, and in particular the presence of building demolition materials, it should be recognised that there may be some risk that such fill may contain contaminants and hazardous building materials.

Appendix A

About this Report

Explanatory Notes – Drill & Excavation Logs

Introduction

These notes have been provided to amplify DP's report in regard to classification methods, field procedures and the comments section. Not all are necessarily relevant to all reports.

DP's reports are based on information gained from limited subsurface excavations and sampling, supplemented by knowledge of local geology and experience. For this reason, they must be regarded as interpretive rather than factual documents, limited to some extent by the scope of information on which they rely.

Copyright

This report is the property of Douglas Partners Pty Ltd. The report may only be used for the purpose for which it was commissioned and in accordance with the Conditions of Engagement for the commission supplied at the time of proposal. Unauthorised use of this report in any form whatsoever is prohibited.

Borehole and Test Pit Logs

The borehole and test pit logs presented in this report are an engineering and/or geological interpretation of the subsurface conditions, and their reliability will depend to some extent on frequency of sampling and the method of drilling or excavation. Ideally, continuous undisturbed sampling or core drilling will provide the most reliable assessment, but this is not always practicable or possible to justify on economic grounds. In any case the boreholes and test pits represent only a very small sample of the total subsurface profile.

Interpretation of the information and its application to design and construction should therefore take into account the spacing of boreholes or pits, the frequency of sampling, and the possibility of other than 'straight line' variations between the test locations.

Groundwater

Where groundwater levels are measured in boreholes there are several potential problems, namely:

- In low permeability soils groundwater may enter the hole very slowly or perhaps not at all during the time the hole is left open;
- A localised, perched water table may lead to an erroneous indication of the true water table;
- Water table levels will vary from time to time with seasons or recent weather changes. They may not be the same at

the time of construction as are indicated in the report; and

• The use of water or mud as a drilling fluid will mask any groundwater inflow. Water has to be blown out of the hole and drilling mud must first be washed out of the hole if water measurements are to be made.

More reliable measurements can be made by installing standpipes which are read at intervals over several days, or perhaps weeks for low permeability soils. Piezometers, sealed in a particular stratum, may be advisable in low permeability soils or where there may be interference from a perched water table.

Reports

The report has been prepared by qualified personnel, is based on the information obtained from field and laboratory testing, and has been undertaken to current engineering standards of interpretation and analysis. Where the report has been prepared for a specific design proposal, the information and interpretation may not be relevant if the design proposal is changed. If this happens, DP will be pleased to review the report and the sufficiency of the investigation work.

Every care is taken with the report as it relates to interpretation of subsurface conditions, discussion of geotechnical and environmental aspects, and recommendations or suggestions for design and construction. However, DP cannot always anticipate or assume responsibility for:

- Unexpected variations in ground conditions. The potential for this will depend partly on borehole or pit spacing and sampling frequency;
- Changes in policy or interpretations of policy by statutory authorities; or
- The actions of contractors responding to commercial pressures.

If these occur, DP will be pleased to assist with investigations or advice to resolve the matter.

continued next page

About this Report

Site Anomalies

In the event that conditions encountered on site during construction appear to vary from those which were expected from the information contained in the report, DP requests that it be immediately notified. Most problems are much more readily resolved when conditions are exposed rather than at some later stage, well after the event.

Information for Contractual Purposes

Where information obtained from this report is provided for tendering purposes, it is recommended that all information, including the written report and discussion, be made available. In circumstances where the discussion or comments section is not relevant to the contractual situation, it may be appropriate to prepare a specially edited document. DP would be pleased to assist in this regard and/or to make additional report copies available for contract purposes at a nominal charge.

Site Inspection

The company will always be pleased to provide engineering inspection services for geotechnical and environmental aspects of work to which this report is related. This could range from a site visit to confirm that conditions exposed are as expected, to full time engineering presence on site.

intentionally blank

intentionally blank

EXPLANATORY NOTES - DRILL & EXCAVATION LOGS

GENERAL

Information obtained from site investigations is recorded on log sheets. The "Cored Drill Hole Log" presents data from an operation where a core barrel has been used to recover material - commonly rock. The "Non-Core Drill Hole - Geological Log" presents data from an operation where coring has not been used and information is based on a combination of regular sampling and insitu testing. The material penetrated in non-core drilling is commonly soil but may include rock. The "Excavation - Geological Log" presents data and drawings from exposures of soil and rock resulting from excavation of pits, trenches, etc.

The heading of the log sheets contains information on Project Identification, Hole or Pit Identification, Location and Elevation. The main section of the logs contains information on methods and conditions, material substance description and structure presented as a series of columns in relation to depth below the ground surface which is plotted on the left side of the log sheet. The common depth scale is 8m per drill log sheet and about 3-5m for excavation logs sheets.

As far as is practicable the data contained on the log sheets is factual. Some interpretation is inevitable in the identification of material boundaries in areas of partial sampling, the location of areas of core loss, description and classification of material, estimation of strength and identification of drilling induced fractures. Material description and classifications are based on SAA Site Investigation Code AS 1726 - 2017 with some modifications as defined below.

These notes contain an explanation of the terms and abbreviations commonly used on the log sheets.

DRILLING

Drilling & Casing

NDD	Non-destructive digging	
AD/V	Auger Drilling with V-Bit	
AD/T	Auger Drilling with TC Bit	
WB	Wash-bore drilling	
RR	Rock Roller	
NMLC	NMLC core barrel	
NQ	NQ core barrel	
HMLC	HMLC core barrel	
HQ	HQ core barrel	

Drilling Fluid/Water

The drilling fluid used is identified and loss of return to the surface estimated as a percentage

Drilling Penetration/Drill Depth

Core lifts are identified by a line and depth with core loss per run as a percentage. Ease of penetration in non-core drilling is abbreviated as follows:

VE	Very Easy
E	Easy
F	Firm
Н	Hard
VH	Very Hard

Groundwater Levels

Level taken during or immediately after drilling

Samples/Tests

D	Disturbed	
U	Undisturbed	
С	Core Sample	
SPT	Standard Penetration Test	
Ν	Result of SPT (* sample taken)	
vs	Vane Shear Test	
IMP	Borehole Impression Test	
PBT	Plate Bearing Test	
PZ	Piezometer Installation	
HP	Hand Penetrometer	

EXCAVATION LOGS

Explanatory notes are provided at the bottom of drill log sheets. Information about the origin, geology and pedology may be entered in the "Structure and other Observations" column. The depth of the base of excavation (for the logged section) at the appropriate depth in the "Material Description" column. Refusal of excavation plant is noted should it occur. A sketch of the exposure may be added.

MATERIAL DESCRIPTION - SOIL

Classification Symbol - In accordance with the Unified Classification System (AS 1726-2017, Tables 9 and 10)

Material Description - In accordance with AS 1726-2017, Section 6.1

Moisture Condition

D	Dry, looks and feels dry
Μ	Moist, feels cool, darkened in colour.
w	Wet, free water forms when handling.

Consistency - In accordance with AS 1726-2017, Table 11:

	Description	Su	НР
VS	Very Soft	≤ 12kPa	< 25kPa
S	Soft	12 - 25 kPa	25 - 50 kPa
F	Firm	25 - 50 kPa	50 - 100 kPa
St	Stiff	50 - 100 kPa	100 - 200 kPa
VSt	Very Stiff	100 - 200 kPa	200 - 400 kPa
Н	Hard	≥ 200 kPa	≥ 400 kPa

Strength figures quoted are the approximate range of Unconfined Compressive Strength for each class.

Density Index (%) is estimated or is based on SPT results. Approximate N Value correlation is shown in right column

	Description	Density Index	SPT Value
VL	Very Loose	< 15%	0 – 4
L	Loose	15 – 35%	4 – 10
MD	Medium Dense	35 – 65%	10 – 30
D	Dense	65 – 85%	30 – 50
VD	Very Dense	> 85%	> 50

MATERIAL DESCRIPTION - ROCK

Material Description

Identification of rock type, composition and texture based on visual features in accordance with AS 1726-2017, Section 6.2.

Core Loss

Is shown at the bottom of the run unless otherwise indicated

Description	Spacing (mm)
Thinly Laminated	< 6
Laminated	6 - 20
Very Thinly Bedded	20 - 60
Thinly Bedded	60 -200
Medium Bedded	200 - 600
Thickly Bedded	600 - 2000
Very Thickly Bedded	> 2000

Weathering - No distinction is made between weathering and alteration. Weathering classification assists in identification but does not imply engineering properties – differs from AS1726-2017 where the distinction is made in Table 20/21.

F	Fresh	Rock substance unaffected by weathering	
sw	Slightly Weathered	Rock substance partly stained or discoloured. Colour and texture of fresh rock recognisable.	
MW	Moderately Weathered	Staining or discolouration extends throughout rock substance. Fresh rock colour not recognisable.	
нw	Highly Weathered	Stained or discoloured throughout. Signs of chemical or physical alteration. Rock texture retained.	
xw	Extremely Weathered	Rock texture evident but material has soil properties and can be remoulded.	
RS	Residual Soil	Mass structure and material texture and fabric of original rock are no longer visible.	

Strength - The following terms are used to described rock strength:

	Rock Strength Class	PL Strength Index, Is(50) (MPa)	UCS (MPa)
VL	Very Low	0.03 - 0.1	0.6 – 2
L	Low	0.1 - 0.3	2 – 6
М	Medium	0.3 - 1.0	6 – 20
Н	High	1.0 - 3.0	20 – 60
VH	Very High	3.0 - 10.0	60 – 200
EH	Extremely high	≥ 10.0	>200

Strengths are estimated from UCS tests where possible and supported by Point Load Index Testing of representative samples. Test results are plotted on the graphical estimated strength by using:

- o Diametral Point Load Test
- Axial Point Load Test

MATERIALS STRUCTURE/FRACTURES

<u>ROCK</u>

Natural Fracture Spacing - A plot of average fracture spacing excluding defects known or suspected to be due to drilling, core boxing or testing. Closed or cemented joints, drilling breaks and handling breaks are not included in the Natural Fracture Spacing.

Additional Data - Description of individual defects by type, orientation, in-filling, shape and roughness in accordance with AS 1726-2017, Table 22.

Туре	BP	Bedding Parting
	JT	Joint
	SS	Shear Seam
	SZ	Shear Zone >100mm
	CS	Crushed Seam
	IS	Infilled Seam
	XS	XW Seam
	VN	Vein
	FL	Foliation
	CL	Cleavage

Orientation - angle relative to the plane normal to the core axis.

Infilling	St	Stained					
-	Vn	Veneer					
	Ct	Coating > 1mm					
	CN	Clean					
	Х	Carbonaceous					
	Clay	Clay					
	KT	Chlorite					
	CA	Calcite					
	Fe	Iron Oxide					
	Qz	Quartz					
	MS	Secondary Mineral					
	MU	Unidentified Mineral					
Shape	PR	Planar					
	CU	Curved					
	UN	Undulating					
	ST	Stepped					
	IR	Irregular					
	DIS	Discontinuous					
Roughness	POL	Polished					
	SL	Slickensides					
	S	Smooth					
	RF	Rough					
	VR	Very Rough					

SOIL

Structures - Fissuring and other defects are described in accordance with AS 1726-2017, Table 13, using the terminology for rock defects.

Origin - Where practicable an assessment is provided of the probable origin of the soil, eg fill, topsoil, alluvium, colluvium, residual soil.

Appendix B

Drawings

	Approximate Site Cored Borehole	<image/>
	Cored Borehole	
*	Cored Borehole +	Well
+	Previous Borehole	es
	:	PROJECT NO:
DRAWING TITLE		PROJECT NO: 228571.00
TEST LOC	ATION PLAN	DRAWING NO: 1 REVISION: 0

В	l							B'
30		Indicative existing					Approximate Site	30
	Approximate Sit	e shoring and					Boundary	
28	Boundary		STS-BH102			BH304 Offset 6.2m		
		Offset 4.2m		shoring and		st		
	_		f-st	anchors	FILL / CLAY	vst-h	_?	
26	FILL / CLAY	f-st 11	st-vst		CI ASS V-IV			26
	- ? ? ? ?				2 ? ? ?	- ; ; ; ; ; - ; - ; - ;	- ?	
24	CLASS V-IV			STS-BH204				24
				Offset 7.1m	2	_L-M3 = ? ? ?	?	
22			M			···· M ·		
	- ? ? ? ? - +		м-н <u></u>					
20					2 - 2 - 2 2 2 -	- <u>M</u> - <u>-</u> ??-	- ?	
		н Existing Ground Lev	н vel	Offset 11.7m		M		
18		RL18.9	— Е					
		Bottom Depth 8.81 m	Bottom Depth 9.68 m		CLASS II-I			
16			CLASS II-I		Water Level			
<u>آه</u>					- 2 2	м-н		
N (AH			_ ? ? <u>_</u>	$-3 - \frac{1}{2} - \frac{1}{2} - 3333333$? ? ? ? -	- ?	
			CI A 99 I	M-H		н-vн		14
ELEV			CLASS I		CLA35 I			
12						M M		12
		Proposed Basement 06-A	$r_{L10.40}$		- <u></u> ² = e e e e e e e e e e e e e e e e e e	_ ? ! ! ! !	_ /	
10				Bottom_D8pttr 12 fr 2 ? ? ? ? -	<u>CLAS</u>	н-ун		10
				CLASS I		 vн		
8 · ·				H-VH -				8
						н		
6								6
						[:::] • -] Bottom Depth 22.14 m		
4				Bottom Depth 				4
2								
0								0
	-10 0	10	20	DISTANCE ALONG PROFILE (m)	÷ 40	50	0 60	70
L	EGEND	NOTE:						
	Core Loss Fill Silty Clay	1. Subsu in subs	rface conditions are accur surface conditions may oc	ate at borehole locations. Variations cur between borehole locations.	ROCK STRENGTH EL - Extremely low	SOIL STRENGTH/CONSIS f - Firm	TENCY TESTS / OTHER N - Standard penetration test val	Je 0 5
	Clay Sandstone	Interpr	eted strata boundaries are	e approximate and should be used	VL - Very Iow L - Low M - Medium	st - Stiff vst- Very stiff b - Hard	-? Inferred Geological boundary	
E	Clayey Sand Sandy Silty Clay	as a g 2. Summ	ary logs only. Should be r	ead in conjunction with detailed logs.	H - High	I - Loose md- Medium dense		Horizontal Scale (metres)
	Concrete Siltstone					d - Dense vd - Very dense		venucai Exaggeration = 1.7
		CLIENT: The Grand Liverpo	ol Pty Ltd	TITLE: Interpreted Ge	eotechncial Cross S	ection B-B'		PROJECT No: 228571.00
		OFFICE: Sydney	DRAWN BY: LJH	Geotechnical	Investigation			DRAWING No: 3
	PARTNERS	SCALE: 1:250 (H) @ A3	DATE: 21/05/2024	402 Macquarie	e Street. Liverpool			REVISION: 0
		1:150 (V) (V)			· · · · ·			· · · · · · · · · · · · · · · · · · ·

Appendix C

Borehole Logs

			Г:F N:/	Propo	sed Hote	and A			N-COF	RE	DR	ILL F	IOLI	E - 0	BEO	LOC	GICAL	LOG	ì	HC FIL SH	DLE N E / JOE EET:	O: BH NO: 2 1 OF 5	301 28571.0	D
ŀ	POS		N : E	: 307	710.5, N	: 62439	912.0 (56 M	GA2020)	s	SURF	ACE ELI	EVATIO	ON : 2	27.30 (AHD)		ANGLE F	ROM	1 HORI	ZONT	AL : 90)°	
	RIG	TYPE	E : H	ydrap	ower Sco	out MO	UNTIN	IG :	Truck					CONT	RACTO)r : (Ground Te	est	DR	ILLER	: GM			
ŀ	DAT	E ST/	ARTE	D:6	6/5/24	DATE	E COM	IPLET	ED : 7/5	5/24		DATE	LOGG	ED :	6/5/24		LOGGE	DBY: S	SI		CHE	CKED	3Y : L.	JH
	DRILLING MATERIAL																							
F		WATER LOSS	DRILLING PENETRATION	GROUND WATER LEVELS	SAMPLES & FIELD TESTS	DEPTH (m) RL (m AHD)	GRAPHIC LOG	CLASSIFICATION SYMBOL		Soil	l Type	MATE , Colour, F Secondary	RIAL DE Plasticity / and Mi	ESCRIP / or Part nor Cor	TION icle Cha nponent	iracteris s	stic	MOISTURE CONDITION	CONSISTENCY RELATIVE DENSITY		& O	STRUCT ther Obs	URE ervations	6
ſ	A A					27.3			0.15m FIL	L: GR/	AVEL:	grey, coars	se gravel	, aggreg	ate				L	FILL				
						-	1		CL	AY: hig	gh plas	ticity, pale g	grey-brow	vn						RESID	UAL SO	IL		-
						-	1	СН										w~PL	St to VSt					
						-			0.70m															
						-			CL	AY: pa	ale grey	v, (shaly cla	y)											
			F			1.0-	=	CL										w <pl< td=""><td>VSt to H</td><td></td><td></td><td></td><td></td><td>-</td></pl<>	VSt to H					-
	<u> </u>			p		- 20.3			1.20m	TOTO			noronthu	ion (louis	ia lauratri	ongth				ROCK				
	Casing			oserve		-			SIL	1510	ине: ра	ae grey, ap	parenuy	very low	O IOW SUR	engin				Rook				-
	MH-			Not OI		-																		-
						_																		
						20-																		
			н			25.3																		_
						-	1																	-
-							1																	-
	T R					-																		-
	* *								2.85m	ntinuos	d aa C													
						3.0-	{		Co	nunuec	d as C	ored Drill H	ole											-
						-	-																	
						-	4																	-
						-																		-
s																								-
jel Too																								
4 Datç						23.3	1																	_
12.00.0						-	1																	-
26 10.0						-	1																	-
24 11:2						-	1																	
ay/20						-	1																	
 30/N 						5.0-	-																	-
gFile>						-	-																	-
Drawin						-	-																	-
PJ <<						-	4																	
JGS.G						_																		
.00 LC																								-
22857						21.3																		_
JLE 2 :						-	1																	-
ЧL						-	1																	-
R DR						-	1																	-
N-COF						-	1																	
LA NO.						7.0-	1																	-
Log Ri						-	1																	-
.GLB						-	-																	-
LOGC						-	-																	
NEW						-																		
.3.14 -																								
RMS LIB 40	See detai & ba	Explan ils of al sis of c	atory I bbrevi descrip	Notes ations otions.	for	19.3															g			glas

	PROJECT : Proposed Hotel and Apartments HOLE NO : BH																	
	LOC	ATIO	.г N:4	02 M	acquarie	Street,	, Liverpool					SHEET : 2 OF 5						
	POS		₩ : Е	: 307	710.5, N	: 62439	912.0 (56 MGA2020)	SURFACE ELEVATION : 27	2.30 ((AHD)	ANGLE FROM HORIZONTAL : 90°							
	DAT	E ST		D:6	/5/24		E COMPLETED : 7/5/	24 DATE LOGGED : 6	/5/24		GED BY : SI CHECKED BY : LJH							
	CAS	SING E	DIAME	TER	: HW		BARREL (Length): BIT:			BIT C	CONDITION :						
		C	RILL	ING	(0			MATERIAL	-			FRACTURES						
	PRILLING & CASING	WATER LOSS	문문 (CORE LOS	RQD (%)	SAMPLES &	O DEPTH (m)	이 ROCK TYPE 문 이 (texture, fabric 의 alteration, c	DESCRIPTION : Grain size, Colour, Structure ; mineral composition, hardness ementation, etc as applicable)	Weathering	ESTIMATED STRENGTH Is(50) ●-Axial Q-Diametral	NATURAL FRACTURE (mm) O O	ADDITIONAL DATA (joints, partings, seams, zones, etc) Description, apparent dip, infilling or coating, shape, roughness, thickness, other, [true dip, dip direction]						
						273 												
			0% LOSS	98	ls(50) a=0.39	3.0- 24.3 -	2.85m START Cr Siltstor grained, p at 0-5°	DRING AT 2.85m IE: grey and brown, 10-20% fine Ile grey sandstone laminations, bedding	MW									
02.00.04 Datgel Tools			4.15 0% LOSS	95	is(50) a=0.63	4.0 23.3						-						
y/2024 11:24 10.					ls(50)	50-			SW			4.60: JT 25° Fe UN RF						
DGS.GPJ < <drawingfile>> 30/Ma;</drawingfile>	НФ3		5.85 5%	82	is(50) a=0.49	5.0	5.90m											
28571.00 LC			LÖSS	62		6.0 — ^{21.3} —	6.20m	IE: dark grey, carbonaceous				-5.86-6.20: JT 85° PR RF fragmented 6.00-6.20: X shale						
RTA CORED DRILL HOLE 4 2					ls(50) a=0.65		6.50m SILTSTON	IE: as above	SW			6.45: JT 80° partially tight 6.60: JT 35° tight 6.90: BP 5° Clay VNR						
:3.14 - NEW LOGO.GLB Log					is(50) a=5.2	- - - 8.0	SANDSTC grey sittstc	NE: fine grained, pale grey, 0-10% dark ne laminations	_			7.30: JT 50° tight 						
RMS LIB 40						19.3												

NEW LOGO.GLB Log RTA CORED DRILL HOLE 4 228571.00 LOGS.GPJ <<DrawingFile>> 30/May/2024 11:24 10.02.00.04 Datgel Tools LIB 40.3.14 -

File: 228571.00 BH301 RevA 3 OF 5

P	ROJEC	T:F	Propos	ed Hote	l and A	partme	nts	CORED DRI	ll hoi	E I	_OG				HOLE NO : BH301 FILE / JOB NO : 228571.00
		DN:4	02 Ma	acquarie	Street	Liverp				30 /*	יחחי			POM	
R	IG TYP	E: H	. 307 vdrapo	wer Sco	0243	UNTIN	G : Truck	JURFAUE ELEVA	CONTRA	30 (A ACTO	ערא) R : Grou	AN Ind Test	GLE F		LER : GM
D	ATE ST	ARTE	D:6/	/5/24	DATE	COMF	PLETED : 7/5/24	4 DATE LO	GGED : 6/	5/24	LO	GGED B	Y : S	1	CHECKED BY : LJH
C,	ASING	DIAME	TER	: HW		BA	RREL (Length)	: BIT :						BIT (CONDITION :
PR	OGRESS		ING	w م				MATERIAL		E	ESTIMATED STR	ENGTH N		4	
DRILLING	& CASING WATER LOSS	E CORELOS E CORELOS	RQD (%)	SAMPLES 8 FIELD TEST	DEPTH (m) 0.01 10.01 10.01	GRAPHIC LOG	ROCK TYPE : (texture, fabric, alteration, ce	DESCRIPTION Grain size, Colour mineral compositio mentation, etc as a	, Structure n, hardness pplicable)	Weathering	ls(50) ●-Axial O-Diametr	a ₽ ₩ ₩ ₩ ₩ 8	ACTU (mm)		(joints, partings, seams, zones, etc) Description, apparent dip, infilling or coating, shape, roughness, thickness, other, [true dip, dip direction
		0% LOSS	92		11.3		SILTSTONE 16.20m	: dark grey (continued)		SW					-16.05: JT 30° X CT PR S 1mm -16.12-16.15: fragmented -
		17.32 0% LOSS	100	Is(50) a=3.68 Is(50) a=3.05 Is(50) a=2.25	17.0- 103 - - - - - - - - - - - - - - - - - - -		SANDSTON 18.50m INTERBEDI SILTSTONE dark grey sil sandstore, t	E: fine grained, pale grey DED AND INTERLAMIN/ AND SANDSTONE: 50 stone, 40-50% pale grey edding at 0-5°	ATED 60% grey to , fine grained	F					-16.12-16.15: tragmented
.02.00.04 Datgel Tools H03		20.30 0% LOSS	97	ls(50) a=1.53	19.0 - 8.3 - - - 20.0 - 7.3 -		sanosione, t	edding al U-S			•				-
: <drawingfile>> 30/May/2024 11:24 1</drawingfile>				ls(50) a=1.39											
E 4 228571.00 LOGS.GPJ <				ls(50) a=2.27	22.0-										Ц
RTA CORED DRILL HOLE				ls(50) a=2.4											-22.51: BP 5° MU -22.83-23.15: JT 80° CN UN RF
3 Log F		23.30			-										-23.23: BP 0° MU 5mm
- NEW LOGO.GLE		0% LOSS	100	ls(50) e=1.04	-										- - -
0.3.14				a-1.01											
RMS LIB 4					3.3										

								C	ORED DR	ILL HO	LE	LO	G			HOLE NO : BH301 FILE / JOB NO : 228571.00
	PRO LOC	JECT ATIO	「:F N:4	Propos 02 Ma	ed Hote acquarie	l and A Street	partme Liverp	nts ool								SHEET : 5 OF 5
	POS	ITION	N : E	: 307	710.5, N	: 62439	912.0 (5	6 MGA2020)	SURFACE ELEV	ATION : 27	.30 (AHD)		ANGLE	FRON	MHORIZONTAL: 90°
	RIG	TYPE		ydrapo	ower Sco			G: Truck				DR :				
ŀ	CAS			ETER	: HW	DATE	BA	RREL (Length)	BIT :	JGGED . 0/3	5/24		LUGGE	. 100	BIT	CHECKED BY . LJH
Ī		0	RILL	ING					MATERIAL							FRACTURES
	PROG	RESS	()	(%	ES & ESTS	E Q	₽,				ring	ESTIMAT	ED STRENGTH Is(50)	NATUF FRACT	RAL URE	
	& CASING	WATER LOSS	CORE DEPTH	RQD (SAMPLI FIELD TE	HL (m 7 HL (m 7 24.0	GRAPI	(texture, fabric, r alteration, cer	mineral compositi nentation, etc as	on, hardness applicable)	Weathe	-0 -03 -03	Diametral	(mm	1) () 1000 1000	Description, apparent dip, infilling or coating, shape, roughness, thickness, other, [true dip, dip direction
NEW LOGO GLB Log RTA CORED DRILL HOLE 4 228571 00 LOGS GPJ < <drawingfile>> 30May/2024 11:24 10.02.00.04 Dargei Tools</drawingfile>	A DRILIN BARAN BA		40.0) PRELL DEPTH DO% LOSS 28.15		Later Constraints (50) Later	La E C C C C C C C C C C C C C C C C C C		(texture, fabric, r alteration, cer INTERBEDD SILTSTONE dark grey silt sandstone, b 28.15m BOREHOLE Target depth	mineral compositi nentation, etc as ED AND INTERLAMIN AND SANDSTONE: 5 stone, 40-50% pale gre edding at 0-5° (continue BH301 TERMINATED	on, hardness applicable) IATED 0-60% grey to 9, fine grained ad)	H Meatrantic Alexandree					Control Description, apparent dip, infiling or coating, shape, roughness, thickness, other, [true dip, dip direction 27.15: JT 50° CN UN RF 27.75: JT 45° CN UN RF
MS LIB 40.3.			I	<u> </u>			<u> </u>	1								

	PRC	JECT	F : F	Propo	sed Hote	and A	NON-CORE DRILL HOLE - GEOLOGICAL LOG	HOLE NO : BH302 FILE / JOB NO : 228571.00 SHEET : 1 OF 5
F	POS		N : E	: 307	707.6, N	: 62439	23.8 (56 MGA2020) SURFACE ELEVATION : 27.90 (AHD) ANGLE FR	OM HORIZONTAL : 90°
	RIG	TYPE	E : H	ydrap	ower Sco	out MO	INTING : Truck CONTRACTOR : Ground Test [DRILLER : GM
ŀ	DAT	ESI	ARTE	D:8	3/5/24	DATE	COMPLETED : 9/5/24 DATE LOGGED : 8/5/24 LOGGED BY : SI	CHECKED BY : LJH
			DF	RILLIN	IG	1	MATERIAL	
F		RESS MATER LOSS	DRILLING	GROUND WATER LEVELS	SAMPLES & FIELD TESTS	DEPTH (m) RL (m AHD)	OI HOY MATERIAL DESCRIPTION WATERIAL DESCRIPTION Soil Type, Colour, Plasticity or Particle Characteristic Soil Type, Colour, Plasticity or Particle Characteristic	STRUCTURE & Other Observations
						27.9	FILL: GRAVEL: coarse gravel	FILL 0.00: aggregate
						_	CLAT: nigh plasticity, pale grey-brown	
			E			-	w~PL сн	St .
						-		
					1.00m SPT	1.0-	1.00m	
				rved	4, 8, 12 N=20	26.9	CLAT. I/W plasticity, pale grey	
	W Cas		F	t Obse	1.45m	-	CL W <pl td="" vs<=""><td>t to H</td></pl>	t to H
				No		-	1.70m	
						-	SILTSTONE: grey-brown, apparently very low to low strength	ROCK
						2.0-		-
			н			-		
_					2.50m	-		
-					20/150mm N=R 2.65m	-	2.72m	
						1 -	Continued as Cored Drill Hole	
						3.0 — 24.9		-
slo						_		
tgel Too						4.0-		_
0.04 Da						23.9		
10.02.0						-		
11:26						-		
ay/2024						-		
*> 30/M						5.0-		-
ingFile>						-		
< <draw< td=""><td></td><td></td><td></td><td></td><td></td><td> -</td><td></td><td></td></draw<>						-		
S.GPJ						-		· ·
00 LOG						-		
228571.1						6.0- 21.9		-
DLE 2 2						-		
RILLH						-		
ORE D								
NON-C						7.0-		_
9 KI A						20.9		
GLB Lo						-		
-0 <u>6</u> 0.						-		
- NEW						-		
40.3.14	See	Typlan	atory	Notee	for	8.0		
AMS LIB.	detai & ba	ls of al sis of c	bbrevi descrip	ations otions.		10.9		

DR		т·г	Propo	sed Hote	l and A	nartme	onte	CORED DRILL	. Holi	E	LOG		HOLE NO : BH302 FILE / JOB NO : 228571.00
LO	CATIO	N : 4	102 M	acquarie	Street	, Liverp	ool						SHEET : 2 OF 5
PC	SITIO	N : E	E: 307	707.6, N	: 62439	923.8 (56 MGA2020)	SURFACE ELEVATIO	N : 27.90	0 (/	AHD)	ANGLE FROM	HORIZONTAL : 90°
	J I YPE	= : H ARTE	ydrap ∵o	ower Sco			G: Iruck			21 24			
CA	SING		ETER	: HW	DAT	B	ARREL (Length)	BIT :	_D . 0/3/2	24	LOGGL	BIT	CONDITION :
	[DRILL	ING					MATERIAL					FRACTURES
PRO	GRESS	oss		s & s TS	ê î	υ		DESCRIPTION		ĝ	ESTIMATED STRENGTH Is(50)		ADDITIONAL DATA
DRILLING	WATER LOSS	E COREL MARCOREL MARCOREL	RQD (%)	SAMPLES FIELD TES	DEPTH (r B RL (m AH	GRAPHIC	ROCK TYPE (texture, fabric, alteration, ce	: Grain size, Colour, Stru mineral composition, ha mentation, etc as applic	ucture ardness able)	Weatherir	O-Diametral O-Diametral	(mm) (mm)	 (joints, partings, seams, zones, etc) Description, apparent dip, infilling or coating, shape, roughness, thickness, other, [true dip, dip direction]
					27.9								
					-	1							
					-								
					-								
					1.0-								-
					20.9								
					_								
					-	1							
					-								-
					2.0-								-
					-								
					-								
					-								
		0%	0		<u> </u>		2.72m START COI SILTSTONE	RING AT 2.72m	н	IW			
		LOSS 3.00						pale giey biowit					
		0%	60		3.0 24.9								-2 72-3 55: Clay fragmented
		2000			-								-
					-								-
					-		3.55m SILTSTONE	grey and grey-brown, 0-10%	pale M	100			
					-		grey, fine gr at 0-5°	ained sandstone laminations, b	edding				
ools									н	w			-3.85-3.95: Fe fragmented
atgel T					23.9	1			м	١W			_
.04 D					-				н	IW			-4.20-4.29: Clay fragmented
02.00					-				M	100			-
24 10.					-								-
24 11:					-				н	w			–4.70-4.73: Decomposed Seam ↓4.78-4.87: JT 65° UN RF fragmented
/ay/20					5.0-				м	100			50mm
> 30/N					22.9								
gFile> 23													
H(-	1			s	sw			-
J <<[5.65	80		-								-
3S.GF		LÖSS			-								-
00 LOX					6.0-								-
8571.0					21.9								-
4 22					_								_
HOLE													
ORILL					-	1							-6.60: BP 5° Fe fragmented 10mm - -6.71: JT 30° Fe healed
RED					-	╢║║	6.90m						-
A CO					7.0-		SILTSTONE	: dark grey, carbonaceous					-6.96-7.10: JT2 SN ST RF 45 and 80°
.og RT					-								-7.10-7.22: fragmented
GLBL					-		7.40m						
000							SILTSTONE	: pale grey and grey					
EWL													-7 70-7 83 [.] CS
14 - N					-	1				2			
3 40.3.		1	I	I	8.0		11				K333	IIII 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
AS LIE													V Douglas
R R													PARINERS

File: 228571.00 BH302 RevA 2 OF 5

							(CORED DRI	LL HOL	E L	.OG		HOLE NO : BH302 FILE / JOB NO : 228571.00
PR LO	OJEC [®] CATIC	T : F)N : 4	Propos 02 Ma	sed Hote acquarie	l and A Street	partme Liverp	ents bool						SHEET : 3 OF 5
PO	SITIO	N : E	: 307	707.6, N	: 62439	23.8 (56 MGA2020)	SURFACE ELEVA	TION : 27.	90 (Al	HD)	ANGLE FROM	HORIZONTAL : 90°
RIG			/drapo	ower Sco			IG : Truck				R : Ground To	est DRI	
CA	SING	DIAME	TER	: HW	DATE	B/	ARREL (Lenath)	BIT :	3GED . 0/3	5/24	LUGGE	BIT	CONDITION :
	-	ORILL	NG				(3 /	MATERIAL					FRACTURES
DRILLING & CASING	GRESS	문제품 (CORE LOSS 편집 (CORE LOSS	RQD (%)	SAMPLES & FIELD TESTS	© DEPTH (m) C RL (m AHD)	GRAPHIC LOG	ROCK TYPE : (texture, fabric, alteration, ce	DESCRIPTION Grain size, Colour, mineral compositior mentation, etc as ap	Structure n, hardness plicable)	Weathering	STIMATED STRENGTH Is(50) • - Axial • - Diametral •	NATURAL FRACTURE (mm)	ADDITIONAL DATA (joints, partings, seams, zones, etc) Description, apparent dip, infilling or coating, shape, roughness, thickness, other, [true dip, dip direction
		0% LOSS 8.40 0% LOSS	80 98		19.9 - -		8.40m SANDSTON grey siltstone 0-10°	: pale grey and grey (cont E: fine grained, pale grey, a laminations, indistinct be	nued) 10% dark dding at	F			—8.35: JT 30-80° Fe CU healed
					9.0 — 18.9 -		9.00m SILTSTONE sandstone la bedding at 0-	: grey, 20% pale grey, fine minations, distinct and inc 5°	e grained listinct				—9.02: JT 40° tight —
					- 10.0 — ^{17.9} -								⊐-9.85-9.88: fragmented -
	24/05/241	11.20 0% LOSS	90		- 11.0- ^{16.9} -					HW SW			⊐-10.88-10.92: CS
10.02.00.04 Datgel Tools HQ3					- 12.0 — ^{15.9} -					F			⊐-11.65-11.68: CS ¬11.72: BP 5° fragmented 5mm
<drawingfile>> 30/May/2024 11:24</drawingfile>					- 13.0 — ^{14.9} -								
L HOLE 4 228571.00 LOGS.GPJ <<		14.20 0% LOSS	96		- 14.0 — ¹³⁹ -								
NEW LOGO.GLB Log KI A COKED UKIL					- 15.0 — ¹²⁹ - -		15.02m SANDSTON 10-20% dark 0-5°	E: fine grained, pale grey grey siltstone laminations	to grey, , bedding at				
tms LIB 40.3.14 -					16.0 11.9		16.00m						

PROJ	ECT	: F	Propos	sed Hote	I and A	partme	ents (CORED D	RILL HOI	LE	LOG	ì			HOLE NO : BH302 FILE / JOB NO : 228571.00
LOCA		l:4	02 M	acquarie	Street	, Liverp				00 /	ייםחע				
RIG T	YPE	. E : H'	. 307 vdrap	ower Sco	0243	∍∠3.8 ()UNTIN	IG : Truck	SURFAUE ELE	CONTR	.eu (ACT(round To	est		LER : GM
DATE	STA	RTE	D: 8	/5/24	DATI	E COM	PLETED : 9/5/2	4 DATE I	_OGGED : 8/	5/24	2	LOGGE	DBY:	SI	CHECKED BY : LJH
CASIN	IG D	IAME	TER	: HW		B	ARREL (Length)	: BIT	:					BIT (CONDITION :
PROGR	D FSS		ING	_{ര്} ഗ				MATERIAL		_	ESTIMATED	STRENGTH	NATUR	RAL	
& CASING	WATER LOSS	CORELO	RQD (%)	SAMPLES	DEPTH (m 0.91 DEPTH (m 10.91	GRAPHIC LOG	ROCK TYPE : (texture, fabric, alteration, ce	DESCRIPTION : Grain size, Colo mineral composi mentation, etc as	our, Structure tion, hardness applicable)	Weathering	™	50) Axial ametral 도 약 H 표	FRACTI (mm	JRE () COLE	(joints, partings, seams, zones, etc) Description, apparent dip, infilling or coating, shape, roughness, thickness, other, [true dip, dip direction
		0% _OSS	96		11.9 		SILTSTONE grey, fine gra at 0-5°	: dark grey and grey, ained sandstone lamir	0-10% pale lations, bedding	F					⊐-16.03-16.05: X fragmented, shale —16.65: JT 20° CA PR S X Shale
	1	17.25 0% _OSS	100		- 17.0 — - - -		17.00m SANDSTON siltstone lam	E: fine grained, pale g inations, bedding at 0-	grey, 0-20% grey 5°	_					-
					- 9.9 - -										-
					- 19.0 8.9 - -		19.25m INTERBEDD SILTSTONE dark grey sill sandstone, t	DED AND INTERLAM AND SANDSTONE: Istone, 50% pale grey vedding at 0-5°	INATED 50% grey to , fine grained	_					-
1:24 10.02.00.04 Datgel Tools HQ3	:	20.25 0% _OSS	100		- 20.0 — ^{7.9} -										—19.92: JT 80° CN PR RF
ingFile>> 30/May/2024 1					21.0 — 6.9										-20.75-21.00: JT 45-80° CN CU RF -21.30-21.40: JT4 45-80° ST tight
71.00 LOGS.GPJ < <draw< td=""><td></td><td></td><td></td><td></td><td>- - 22.0 — 5.9</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>21.90: JT 70° tight -</td></draw<>					- - 22.0 — 5.9										21.90: JT 70° tight -
VEW LOGO GLB Log RTA CORED DRILL HOLE 4 2287	:	23.25													
RMS LIB 40.3.14						<u> </u>	II								

Р	ROJEC	CT : F	Propos	sed Hote	l and A	partme	ents	CC	ORED I	DRILL	HOL	E	LC	G						HOLE NO : BH302 FILE / JOB NO : 228571.00
L	CATI	ON : 4	02 M	acquarie	Street	Liverp		<u> </u>			07.5	<u> </u>	<u></u>							SHEET : 5 OF 5
P	JSITIC G TVE)N :E	:: 307	/07.6, N	: 62439	923.8 (5 UNITINI	G · Truck) SI	JRFACE E		: 27.9	U (/ CTC	AHC) Gro	und T	ANG	ile f	RO- ח	M H	FR · GM
D	ATE S	TARTE	D: 8	/5/24	DATE	E COM	PLETED : 9	/5/24	DAT	E LOGGED	: 8/5/	24		LC	GGE	D B	′ : S	3		CHECKED BY : LJH
С	ASING	DIAME	TER	: HW		BA	ARREL (Leng	gth) :	В	IT :								В	IT C	ONDITION :
		DRILL	ING				1		MATER	IAL										FRACTURES
	& CASING WATER LOSS	CORELOSS (CORELOSS (CORELOSS (CORELOSS	RAD (%)	SAMPLES & FIELD TESTS	S DEPTH (m) RL (m AHD)	GRAPHIC LOG	ROCK TY (texture, fat alteration	DE: PE : Gr pric, mir , cemer	SCRIPTIO ain size, C neral comp ntation, etc	N colour, Struct osition, hard as applicab	ture Iness Ile)	Weathering		ATED ST Is(50) ●-Axia O-Diame ♡-T ∑ T ∑ I	RENGTH Iral	FR.	ATUR ACTU (mm)		CORE	ADDITIONAL DATA (joints, partings, seams, zones, etc) Description, apparent dip, infilling or coating, shape, roughness, thickness, other, [true dip, dip direction
Č,					-24.0 — 3.9 — - 25.0 —		INTER SILTSI dark gr sandsto	BEDDED ONE ANI ey siltston one, beddi	AND INTERL D SANDSTOI e, 50% pale g ing at 0-5° (cc	AMINATED NE: 50% grey to rey, fine grained intinued)	d	F								-
	,				2.9		25.30m													-
					26.0 — 1.9 -		BOREH Target	HOLE BH:	302 TERMIN	ATED AT 25.30	m									-
					- 27.0 29 - -															-
24 11:24 10.02.00.04 Datgel Tools					28.0 — -0.1 — - -															
JGS.GPJ < <drawingfile>> 30/May/2(</drawingfile>					29.0 — -1.1 - -															
CORED DRILL HOLE 4 228571.00 LC					30.0															
3.14 - NEW LOGO.GLB Log KI A C					31.0															-
RMS LIB 40					-4.1													_		

PR	DJEC	Г : F	ropo	sed Hote	l and A	N Apartme	ION nts	I-COR	E DF	RILL	HOL	E - G	EOL	OGI	CAL L	.OG	Ì	HOLE NO : BH FILE / JOB NO : 2 SHEET : 1 OF 5	303 28571.00
LO(PO:		N : 4	02 M : 307	acquarie 717.0. N	Street : 6243	, Liverp 929.1 (5	001 6 MC	GA2020)	SURI	FACE FI	LEVATIO	ON : 27	7.60 (AF	HD)	AN	IGLE F	ROM	HORIZONTAL : 9)°
RIG	TYPE	E : H	/drap	ower Sco	out MC		G :	Truck				CONTR	ACTOR	- , R : Gro	und Test		DRI	LLER : GM	
DA	TE ST.	ARTE	D: 2	2/5/24	DATI	E COMP	PLET	ED : 2/5/2	24	DATE	ELOGO	GED : 2	/5/24	L	DGGED E	BY : F	RT	CHECKED	BY : LJH
\vdash		DF		IG									MA	TERIAI					
PRO	GRESS	, ZO	TER	sTS STS	ÊĜ	U	NOI									щZ	≻ v		
DRILLING & CASING	WATER LOSS	DRILLING	GROUND WA	SAMPLES FIELD TES	DEPTH (r RL (m AH	GRAPHI LOG	CLASSIFICAT SYMBOL	:	Soil Type	MAT e, Colour, Seconda	ERIAL DI Plasticity ry and M	ESCRIPT y or Partio inor Com	ION cle Chara ponents	cteristic		MOISTUR	CONSISTEN RELATIVI DENSITY	STRUC & Other Obs	rURE ervations
					27.6			Silty C mediu	CLAY: me m ironsto	dium plasti one gravel	icity, red-b	rown and p	oale grey, t	trace fine	to			RESIDUAL SOIL	
– AD/T –– asing –––		E	served		- -		СІ									w <pl< td=""><td>F to St</td><td></td><td></td></pl<>	F to St		
HWC		F	Not Obs	4.00-													St to VSt		
¥ ®				SPT 13,	1.0- 26.6			1.15m									н	1.00: SPT Recovery: 0.3	m
≤		н		25/150mm HB N*=R				1.30m SILTS	STONE: c	orange-brov	wn, grey, a	apparently	very low st	trength				ROCK	
				1.30m	/ -	1		Conti	nued as (Cored Drill	Hole								
					2.0-	-													
					-														
					3.0- 24.6	-													
					-														
ø					-	-													
atgel Tool					4.0-														
.02.00.04 C					- 23.6														
11:26 10.																			
30/May/202					50-														-
vingFile>>					22.6														
sPJ < <drav< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></drav<>																			
00 LOGS.6					.														
2 228571.					6.0- ^{21.6}														
RILL HOLE					.														
4-CORE UI																			
g RTA NOI					7.0-														
0.GLB Loc																			
- NEW LOG																			
0.3.14	Evela		loto-	for	8.0-														
deta	ils of a asis of o	bbrevi descrip	ations		19.6														ouglas

								CORED D	RILL HOL	.E	LOG			HOLE NO : BH303
PR	OJEC	T:F	ropos	sed Hote	I and A	partme	nts							FILE / JOB NO : 228571.00 SHEET : 2 OF 5
PO	SITIO	N : E	: 307	717.0, N	: 62439	29.1 (5	6 MGA2020)	SURFACE ELE	VATION : 27.	60 (/	AHD)	ANGLE FRO	DM F	IORIZONTAL : 90°
RIG	i TYPI	E : H	/drap	ower Sco	out MO	UNTIN	G : Truck		CONTRA	CTC	R : Ground T	est D	RILI	ER : GM
DA	TE ST	ARTE	D: 2	/5/24	DATE		PLETED : 2/5/2	24 DATE I	OGGED : 2/5	5/24	LOGGE	DBY:RT		CHECKED BY : LJH
CA	SING	DIAME	NG	: HW		BA	ARREL (Length)	3.00 m BIT MATERIAL	: 5 Step face				SIT C	FRACTURES
PRO	GRESS	SSC		st &	ÊÔ	o		DESCRIPTION		p	ESTIMATED STRENGTH Is(50)	NATURAL		ADDITIONAL DATA
DRILLING & CASING	WATER LOSS	COREL BUN %)	RQD (%)	SAMPLES FIELD TES	O DEPTH (r O RL (m AH	GRAPHI	ROCK TYPE (texture, fabric alteration, ce	: Grain size, Colo , mineral composi ementation, etc as	ur, Structure tion, hardness applicable)	Weatherir	O-Diametral	(mm)	CORE	(joints, partings, seams, zones, etc) Description, apparent dip, infilling or coating, shape, roughness, thickness, other, [true dip, dip direction]
					27.6 - - - - - - - - - - - - - - - - - - -		1.30m START CC	RING AT 1.30m						-
	Ī	LOSS	59		-	\ge	1.53m	55 0.25111 (1.50-1.55)		Д				-
				is(50) a=0.73 is(50) a=0.54	- 2.0- ^{25.6}		SILTSTON 0-20% pale laminations	E: orange-brown, grey grey, fine grained san , bedding at 0-5°	to dark grey, Istone	HW XW MW SW				-1.58-1.63: CS =50mm - -1.66: BP 5° CN PR RF - 1.72: J7 90° Fe SN PR S (1.69-1.74) _ discontinuous - -1.89: J7 20° CN PR RF - -2.04: BP 0° CN PR S - -2.25: JT 20° CN CU RF - -2.25: JT 20° CN CU RF - -2.46: JT 20° CN URF -
		2.48 0% LOSS	86	ls(50) a=0.13	-					XW MW				—2.42: JT 43-90° CN IR RF (2.34-2.48)]-2.48-2.55: CS =70mm —2.66: JT 30° Clay FILLED =20mm
					-									—2.81: IS Clay =10mm
					24.6									—3.08: IS Clay =20mm —3.17: IS Clay =10mm
				ls(50) a=0.61	-					SW				
.00.04 Datgel Tools					4.0-									3.92: JT 45° CN PR S 3.96: JT 15° CN PR S 4.10: BP 0° CN PR RF 4.17: JT 45° CN PR S 4.36: BP 5° CN PR S
1:24 10.02	0-5%			ls(50)	-									4.52: JT 45-90° Fe SN CU S (4.41-4.62)
wingFile>> 30/May/2024 1		5.09 0% LOSS	100	a=0.44	5.0 — 226 -									-
sPJ < <dra< td=""><td></td><td></td><td></td><td>ls(50) a=0.46</td><td>-</td><td></td><td></td><td></td><td></td><td>F</td><td></td><td></td><td></td><td>—5.57: BP 0° Fe SN PR S _</td></dra<>				ls(50) a=0.46	-					F				—5.57: BP 0° Fe SN PR S _
228571.00 LOGS.C					6.0 — ^{21.6}									
HOLE 4 2					-									
O DRILL				ls(50) a=0.43										
A COREL		7.10		ls(50)	7.0-		7.10m 7.00 7.40	v oprhoposoore de l						
NEW LOGO.GLB Log RTA		5% LOSS	95	a=0.73	20.6		7.0011 7.00-7.10m 7.20m CORE LOS SILTSTON 7.50m SANDSTO grey siltstor	<u>a: carbonaceous, dark (</u> SS 0.10m (7.10-7.20) E: as above NE: fine grained, pale g ne laminations, bedding	rey, 0-30% dark at 0-5°	F				
RMS LIB 40.3.14					8.0 19.6	· · · · · ·								

PRO	DJECT	Г : F	ropos	ed Hote	I and A	partme	ents	CORED DI	RILL HOI	LE	LOG		HOLE NO : BH303 FILE / JOB NO : 228571.00
LOC		N:4 J · ⊏	02 Ma	acquarie	Street	Liverp	001		VATION · 27	60 (
RIG	TYPE	• . E E : H\	307 /drapo	wer Sco	out MO	UNTIN	G : Truck	JUNFAUE ELE	CONTRA	(ACT(DR: Ground 1	Test D	RILLER : GM
DAT	E ST/	ARTE	D: 2/	/5/24	DATE	COM	PLETED : 2/5/2	4 DATE	OGGED : 2/	5/24	LOGGE	ED BY : RT	CHECKED BY : LJH
CAS	SING D	DIAME	TER	: HW		B/	ARREL (Length)	: 3.00 m BIT	: 5 Step face			В	IT CONDITION : Good
	E	DRILL	NG	(0	1			MATERIAL				NATUDAL	
& CASING	WATER LOSS	면접 편물 로FRUN %)	RQD (%)	SAMPLES &	» DEPTH (m) RL (m AHD)	GRAPHIC LOG	ROCK TYPE : (texture, fabric, alteration, ce	DESCRIPTION Grain size, Colo mineral composi mentation, etc as	our, Structure tion, hardness applicable)	Weathering	Is(50) ●-Axial O-Diametral	FRACTURE (mm)	(joints, partings, seams, zones, etc) O Description, apparent dip, infilling or coating, shape, roughness, thickness, other, [true dip, dip direction
		5% LOSS	95		- 0.0 <i></i> 19.6 - -		SANDSTON grey siltstone (continued)	IE: fine grained, pale (yrey, 0-30% dark at 0-5°	F			
	03/05/24	9.15 0% LOSS	100	ls(50) a=2.02 ls(50) a=0.76	9.0		8.97m SILTSTONE fine grained 0-5°	: grey to dark grey, 0 sandstone lamination	10% pale grey, s, bedding at	-			
				a-0.70	10.0 — ^{17.6} — -								
				Is(50) a=2.62	- 11.0 <i>—</i> ^{16.6}								
atgel Tools		<u>12.10</u> 0%	98	a=0.44 ls(50) a=1.32	- - 12.0- ^{15.6}								
>> 30/May/2024 11:24 10.02.00.04 D		LOSS		ls(50) a=0.8	- - 13.0 — ^{14.6}								
28571.00 LOGS.GPJ < <drawingfile< td=""><td></td><td></td><td></td><td>ls(50) a=0.89</td><td>- - 14.0<i>—</i> ^{13.6}</td><td></td><td>14.12m SANDSTON grey siltstore</td><td>E: fine grained, pale (</td><td>rey, 5-15% dark and indistinct</td><td>-</td><td></td><td></td><td>- - - -</td></drawingfile<>				ls(50) a=0.89	- - 14.0 <i>—</i> ^{13.6}		14.12m SANDSTON grey siltstore	E: fine grained, pale (rey, 5-15% dark and indistinct	-			- - - -
30.GLB Log RTA CORED DRILL HOLE 4 2		15.00 0% LOSS	96	ls(50) a=1.45	- - 15.0 - ¹²⁶ -		bedding at 0	.5°					
IB 40.3.14 - NEW LOG				Is(50) a=1.54	- - - - - - - - - - - - - - - - -								
RMS													PARTNERS

PRO	JEC	T : I	Propos	sed Hote	el and A	Apartme	ents	CORED DRIL	L HOLE	ΞL	.OG		F	HOLE NO : BH303 FILE / JOB NO : 228571.00 SHEET : 4 OF 5
POS		N : 1	102 Ma E: 307	acquarie 717.0, N	: 6243	, Liverp 929.1 (56 MGA2020)	SURFACE ELEVATI	ON : 27.60) (Al	HD)	ANGLE FR	он мс	RIZONTAL : 90°
RIG	TYPI	E : H	ydrapo	ower Sco	out MC	UNTIN	G : Truck		CONTRAC	TOF	R : Ground T	est I	DRILLE	R : GM
DATI	E ST	ARTE	D: 2	/5/24	DATI	E COM	PLETED : 2/5/2	24 DATE LOGO	GED : 2/5/2	24	LOGGE	DBY:RT		CHECKED BY : LJH
CAS	ING I			: HW		B/	ARREL (Length)	: 3.00 m BII : 5 S	step face			1		NDITION : Good
PROG	RESS	S		¶% TS	20	0			0	E:	STIMATED STRENGTH	NATURAL		ADDITIONAL DATA
DRILLING & CASING	WATER LOSS	HIRUN %)	RQD (%)	SAMPLES FIELD TES	0.01 DEPTH (n 0.01 DEPTH (n 0.01 RL (m AHI	GRAPHIC	ROCK TYPE (texture, fabric, alteration, ce	: Grain size, Colour, S mineral composition, ementation, etc as appl	tructure hardness icable)	VreatileIII	●- Axial O-Diametral	RACIURE (mm)	CORE	(joints, partings, seams, zones, e Description, apparent dip, infilli or coating, shape, roughness, nickness, other, [true dip, dip direct
		0% LOSS	96		11.6		SILTSTON	E: dark grey	XV	w			^{***} F-1	6.05-16.10: XS X =50mm
									+	-			1	6.24: BP 0-5° X VNR PR RF
				le(50)		1								6.42: BP 0-5° X VNR PR RF
				a=1.17	-	1	16.60-16.7	ōm: carbonaceous						6 74 [.] BP 0° CN PR RF
					-	1	17.00		XV	W			S Pi	6.75-16.80: XS X =50mm
					17.0-		SANDSTO	NE: fine grained, pale grey an	d grey,					
					-		bedding at ()-5°						
					-									
					.									
		18.00		ls(50)	19.0.	 :::::								
		0% LOSS	100	a=1.42	9.6]:::::					i i 🔛 i			
					-									
					-									
					-								₿ 1	8.63: JT 15° CN PR S
					-									
				ls(50) a=2.11	19.0 -									
					8.6									
							19.35m				i i 🐰 i	i i i 🔛		9.38: JT 20° CN PR S
							SILTSTON	E AND SANDSTONE: 50-60 rained sandstone, 40-50% da	% pale rk grev					
				ls(50)			siltstone, be	edding at 0-15°	0,					
	, ,			a=1.15	-									
	-0-5%				20.0-									
						 ∶∶∶∶∶ ∥ ∥								
					-						i i 🐰 i			
				ls(50)										
		21.06		a=3.5	21.0-									
		0%	100		6.6									
		1088			.]								
					-	1								
					-									
				ls(50) a=1.56	-	 								
					22.0-									
					.	ŀ								
					.									
					.	l" " :								
				ls(50)		::::: ∥ ∥ ∣								
				a=1.64 ls(50) a=1.33	23.0-]								
					-	1								
					-									
					-	 								
				ls(50) a=2.73	-									
													×	
					3.6									

F	RO	JECT	. : F	ropos	ed Hote	l and A	partme	ents		(COP	RED) DF	RILL	HOL	E	LC)G							HOLE FILE / J SHEET	NO 100 NO	BH3 D : 22 DF 5	03 8571.00)
ŀ	.00/ 2051		N:4 J·F	02 Ma	acquarie 717 0 N	• 62430	Liverp	56 M	GA20	20)	SUE	REACE			· 27	60 (АНГ))				I F	FRC)W F			· 90°	,	
F	RIG	TYPE	: H	/drapo	ower Sco	out MO		IG :	Trucl	<				C	ONTRA		DR	, _ Gr	oun	d Te	st		D	RIL	LER : C	SM			
C	DATE	E ST/	ARTE	D:2/	/5/24	DATE	COM	PLE	TED :	2/5/2	24	D	ATE L	OGGE	D : 2/5	5/24		L	_0G	GE	D B)	(:	RT		С	HECK	ED B	Y:LJ	Н
C	CASI	NGE		TER	: HW		B	ARR	EL (Le	ength)	: 3.0	0 m	BIT	5 Step	o face								В	IT C		ON :	Good		
			2 RILL	NG	<u>م</u> س							MAIL	ERIAL				ESTIN	ATED	STREN	IGTH	NA		241		FRACI				
	& CASING	WATER LOSS	문제 (CORE LOS 코티 RUN %)	RQD (%)	SAMPLES 8 FIELD TEST	7 DEPTH (m) 0 RL (m AHD)	GRAPHIC	R (te)	OCK dure, alterat	TYPE fabric, ion, ce	DESC : Grai minei ementa	CRIPT n size ral cor ation,	ION , Color mposit etc as	ur, Stru ion, hai applica	cture dness ible)	Weathering	VL 0.1	ls(5 ●-A ○-Diai	0) xial metral ⊥ ∽ ↔ ⊥ →	EH -10		ACT		CORE	(joints) Desc or thicknes	s, partii cription coating ss, oth	ngs, se , appai g, shap er, [true	ams, zo rent dip, e, rough e dip, di	nes, etc) infilling ness, p direction
	_		24.15	100		3.6		24.1	5m BOF		= BH30'	3 TERM		AT 24 1	5 m	F		-	×	+	+	+ +	+ 8	<u>-</u>					
						-			Tar	get depti	h	JILIN		24.1	511														-
						- 25.0													Ì										-
						2.6																							-
						-																							-
						26.0 — 1.6 —																							_
						-																							-
						27.0-													Ì										-
						-																							-
s						-																							-
M Datgel Tool						28.0																							-
:24 10.02.00.0						-																							-
0/May/2024 11																													-
awingFile>> 3						-																							-
JGS.GPJ < <d< th=""><td></td><td></td><td></td><td></td><td></td><td> -</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td></d<>						-																							-
1 228571.00 LC						30.0-																							
DRILL HOLE 4						-																							-
RTA CORED E						- 31.0 — -3.4																							-
30.GLB Log F						-																							-
.14 - NEW LOC						-																							-
RMS LIB 40.3						-32.0 -4.4										·		1							ı <u> </u>	Ø	DC		glas

PRC		T : F)N : 4	Propo 02 N	sed Hote acquarie	l and A Street	partme Liverp	ION ents ool	I-CORE	E DF	RILL H	OLE	GEO	LOGI	CAL L	.OG	i	HOLE NO : BH304 FILE / JOB NO : 228571.00 SHEET : 1 OF 4
POS	SITION	N : E	: 307	724.6, N	: 62439	906.7 (5	56 MC	GA2020)	SUR	FACE ELE	VATION	: 27.50 (AHD)	AN	GLE F	ROM	I HORIZONTAL : 90°
RIG	TYPE	E : H	ydrap	ower Sco	out MO	UNTIN	G : '	Truck			CO	NTRACTO	DR : Grou	und Test		DR	LLER : GM
DAI	ESI	ARTE	D:3	80/4/24	DATE	- COM	LEI	ED : 1/5/24	ł	DATEL	.OGGED	: 1/5/24	LC	IGGED B	Y:F	</td <td>CHECKED BY : LJH</td>	CHECKED BY : LJH
		DF		IG								Ν	IATERIAL				
	GRESS	DRILLING	GROUND WATER LEVELS	SAMPLES & FIELD TESTS	DEPTH (m) RL (m AHD)	GRAPHIC LOG	CLASSIFICATION SYMBOL	S	oil Type	MATER e, Colour, Pla Secondary a	IAL DESC asticity or and Minor	RIPTION Particle Cha Component	aracteristic s		MOISTURE CONDITION	CONSISTENCY RELATIVE DENSITY	STRUCTURE & Other Observations
	>			0.10m 0.10m D 0.40m	0.0— 27.5			Silty CL gravel	.AY: me	dium plasticity	, red-brown	, trace fine to	e medium iror	istone	w <pl< td=""><td>St</td><td>RESIDUAL SOIL</td></pl<>	St	RESIDUAL SOIL
		E-F		D 0.50m 0.90m	-		СІ	0.5m: b	ecomino	g orange-brow	'n				w <pl to w~PL</pl 	VSt - H	
W Casing			ot Observed	4.00m 3.00m 12/100mm HB N*=R 1.10m 1.40m D	1.0- 26.5 -			1.10m SILTST	ONE: p	oale brown, gre	ey, apparen	tly very low to	low strength				1.00: SPT Recovery: 0.1 m ROCK
		н	No	(<u>1.50m</u>													
- WB -				2.50m SPT 25/130mm HB N*=R 2.63m	-			2.70m Continu	ued as C	Cored Drill Hol	e						2.50: SPT Recovery: 0.13 m
				2.0011	3.0 — ^{24.5} —												
					-												
					4.0- 23.5 -												
					5.0 — 22.5												
					- 6.0- ^{21.5}												
					-												
					7.0-20.5												
6-			1		- - 8.0												
detai & ba	ils of a sis of o	bbrevi descrip	ations.		13.3												

CORED DRILL HOLE LOG HOLE NO : BH304																	
PF	ROJ	ECI	Г.: F	ropos	ed Hote	I and A	partme	ents	ULL.	200		FILE / JOB NO : 228571.00 SHEET : 2 OF 4					
PC			N:4 J·F	02 Ma	acquarie 724.6 N	• 62430	, Liverp	001 56 MGA2020) SURFACE ELEVATION :	27.50								
RI	G T	YPE	• E : Hy	/drapo	ower Sco	out MO		G : Truck CON	TRACT	OR: Ground T	est DR	ILLER : GM					
DA	ΥE	ST	ARTE	D:3	0/4/24	DATE	E COM	PLETED : 1/5/24 DATE LOGGED	1/5/24	LOGGE	DBY:RT	CHECKED BY : LJH					
CA	SIN	IG [TER	: HW	BIT	CONDITION : Good										
PRO	OGR	ESS	S S	ING	^{م م}					ESTIMATED STRENGTH	NATURAL	ADDITIONAL DATA					
DRILLING	& CASING	WATER LOSS	면접 (CORE LO 편집 (CORE LO	RQD (%)	SAMPLES	O DEPTH (m B RL (m AHD	GRAPHIC LOG	DESCRIPTION ROCK TYPE : Grain size, Colour, Structu (texture, fabric, mineral composition, hardr alteration, cementation, etc as applicable	e athering کوه	Is(50) ●-Axial O-Diametral [©] [©] [©] [©] [©] ⊐ <u>×</u> [⊥] [×] [±] [±]	FRACTURE (mm)	 joints, partings, seams, zones, etc) Description, apparent dip, infilling or coating, shape, roughness, thickness, other, [true dip, dip direction 					
						2.0 — 25.5 27.5 - - - 26.5 - - - - - - - - - - - - - - - - - - -											
		•	0%	80	Ir(50)	-		2.70m START CORING AT 2.70m SILTSTONE: orange-brown, grey to dark grey.				-					
			LÖSS		a=0.22	-		0-20% pale grey, fine grained sandstone laminations, bedding at 0-5°									
			3.15 0% LOSS	85	ls(50) a=0.23	3.0 — 24.5 -											
I Tools		9				- 4.0 -						3.66: JT 20° CN PR S 3.82: JT 45° CN PR S 3.91: JT 45° CN IR RF					
04 Datge						23.5											
4 11:24 10.02.00.0						-						—4.45: JT 45° tight —4.54: JT 30° CN PR S					
J < <drawingfile>> 30/May/202 HQ3</drawingfile>		X			ls(50) a=0.47 ls(50) a=0.48	5.0— ^{22.5} -											
1.00 LOGS.GP			6.00 0% LOSS	86	ls(50) a=0.34	6.0- 21.5											
E 4 2285			6 50		a=1.01	-		e 50m									
FA CORED DRILL HOL		40-60%	85% LOSS	10	ls(50) a=0.9	- - 7.0- 20.5		CORE LOSS 0.74m (6.50-7.24) Core loss and extensive drilling breaks above due to issue with core barrel and drill bit - bit replaced below 7.24m.				-					
.B Log R			7.35			-	(7.24m SILTSTONE: grey to dark grey, 0-10% pale gre	,								
NEW LOGO.GL			0% LOSS 7.59 0% LOSS 7.83	100 100	ls(50) a=7.23	-		fine grained sandstone laminations, bedding at 0-5° 7.64-8.05m: pale grey, fine grained sandstone t	ed								
10.3.14 -			0%	88		8.0											
RMS LIB 4						19.5											

LOGO.GLB Log RTA CORED DRILL HOLE 4 228571.00 LOGS.GPJ <<DrawingFile>> 30/May/2024 11:24 10.02.00.04 Datgel Tools NEWL LIB 40.3.14 -

File: 228571.00 BH304 RevA 3 OF 4

	CORED DRILL HOLE LOG											HOLE NO : BH304 FILE / JOB NO : 228571.00				
	PROJECT : Proposed Hotel and Apartments LOCATION : 402 Macquarie Street, Liverpool															
	POS	ITIO	N : E	: 307	724.6, N	: 62439	906.7 (56 MGA2020)	SURFACE ELEVATION	: 27.50	(AHD)	ANGLE FROM H	ORIZONTAL : 90°				
H	RIG DAT	TYPI F ST	E : H	ydrapo D 3	ower Sco 0/4/24	DATE	UNTING : Truck	COI	• 1/5/24	OR : Ground T	DBY · RT					
	CAS	ING	DIAME	ONDITION : Good												
		[ING			FRACTURES									
F		WATER LOSS	E (CORELOSS E RUN %)	RQD (%)	SAMPLES & FIELD TESTS	DEPTH (m) RL (m AHD)	C ROCK TY C C ROCK TY (texture, fab alteration	DESCRIPTION PE : Grain size, Colour, Struct ric, mineral composition, hard cementation, etc as applicab	vre sesthering le)	ESTIMATED STRENGTH Is(50) ●- Axial O- Diametral	NATURAL FRACTURE (mm)	ADDITIONAL DATA (joints, partings, seams, zones, etc) Description, apparent dip, infilling or coating, shape, roughness, thickness, other, [true dip, dip direction				
			0% LOSS	100		- 10.0 11.5 	SILTST fine gra 0-5° (cc 16.50m SANDS grey silt	DNE: grey to dark grey, 0-5% pale gre ned sandstone laminations, bedding at <i>trinued</i>) TONE: fine grained, pale grey, 0-20% stone laminations, bedding at 0-5°,	y, dark							
					ls(50) a=1.88	- 17.0— ^{10.5}						-				
					ls(50) a=2.31	-						-				
			18.00		ls(50) a=4.36	-						—17.62: BP 0° Clay VNR PR S -				
			0% LOSS	100		9.5	· · · · · · · · · · · · · · ·					-				
	3	%			ls(50) a=3.55		18.92m	EDDED AND INTERLAMINATED				-				
	Н	0-10			Ic/60\	8.5	SILTST and pake dark gree	ONE AND SANDSTONE: 60-70% gree grey, fine grained sandstone, 30-40% y siltstone, bedding at 0-5°	y ,			-				
02.00.04 Datgel Tools					a=1.58	- 20.0 — _{7.5} —						- - -				
30/May/2024 11:24 10.(21.00 0%	100	ls(50) a=1.16	- - 21.0 — 6.5						- -				
LOGS.GPJ < <drawingfile>></drawingfile>					ls(50) a=2.57							-				
3571.00	¥	V	22.14			5.5	22.14m	OLE BH304 TERMINATED AT 22 14								
D DRILL HOLE 4 228						-	Target o	lepth				-				
OGLB Log RTA COREL						23.0						-				
.14 - NEW LOGO						-						-				
RMS LIB 40.3			<u>.</u>			-24.0	•		I	· · · · · · ·	• · · · · · · · · · ·					

PRO		T :F N ·∠	Propos	sed Hote	l and A Street	partm)N 3	I-CORE DRILL HOLE - GEOLOGICAL L	.00	6	HOLE NO : BH405 FILE / JOB NO : 228571.00 SHEET : 1 OF 3
POS	SITIO	N : E	E: 307	704.7, N	: 62438	396.0	(56 l	MG	A2020) SURFACE ELEVATION : 18.70 (AHD) AN	GLE	FROM	HORIZONTAL : 90°
RIG	TYPE	E : H	anjin (DB8	MO	UNTI	NG	: T	Track CONTRACTOR : Rockwell		DRI	LLER :
DAT	ESI	ARTE	D: 1/	/5/24	DATE	= COI	MPL	EIE	ED : 2/5/24 DATE LOGGED : 1/5/24 LOGGED E	3Y : .	AS	CHECKED BY : LJH
		DF	RILLIN	G					MATERIAL			
& CASING	PROGREESS METER LOSS MATER LOSS M							SYMBOL	MATERIAL DESCRIPTION Soil Type, Colour, Plasticity or Particle Characteristic Secondary and Minor Components	MOISTURE	CONSISTENCY RELATIVE DENSITY	STRUCTURE & Other Observations
			pe		18.7				SILTSTONE: dark grey, apparently medium strength; slightly weathered to fresh			ROCK
D/T — Casing		н	bserve		-							-
⁴ № H			Not C		-	1						-
**		-					Щ		0.69m Continued as Cored Drill Hole	-		-
					-	1						-
					17.7]						_
					-	1						-
					-	1						-
					-	1						-
					-	1						-
					2.0-							-
					-	1						-
					-	1						-
					-	1						-
					-							-
					3.0-	1						_
					-							-
					-							-
					-							-
el Tools					-							-
4 Datge					4.0-	1						-
12.00.0					-							-
26 10.0					-							-
024 11:					-							-
May/20					-							-
->> 30					5.0 — 13.7							-
vingFile					-							-
< <drav< td=""><td></td><td></td><td></td><td></td><td>- </td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td></drav<>					-							-
S.GPJ					-							-
0 100					-							-
8571.0					6.0							_
E 2 22					-							-
THOI					-							-
RI DRI					-							-
N-COF					-							-
TA NO					7.0							-
Log R					-							-
O.GLB					-							-
N LOG					-							-
4 - NE/					-							-
40.3.1 Bee	 Explar	l natory l	Notes f	or	8.0 10.7					1	1	
≝ detai ‱ & ba	ils of a isis of (bbrevi descrip	ations otions.									POUGIAS

PRO	PROJECT : Proposed Hotel and Apartments										HOLE NO : BH405 FILE / JOB NO : 228571.00 SHEET : 2 OF 3				
POS		VIN : 4	+∪∠ Ma E: 307	acquarie 704.7 N	: 62438	, Liverp 396.0 (#	56 MGA2020)	SURFACE ELEVATION	N : 187	0 (A	HD)	ANGLE FROM	HORIZONTAL : 90°		
RIG ⁻	TYPE	 E : Ha	anjin [DB8	MO		G : Track	C	ONTRAC		R : Rockwell	DRI	LLER :		
DATI	E ST	ARTE	D: 1/	/5/24	DATE	E COM	PLETED : 2/5/24	4 DATE LOGGE	D : 1/5/	24	LOGGE	DBY : AS	CHECKED BY : LJH		
CAS	NG [DIAME	TER	: HW		BA	ARREL (Length)	: BIT :				BIT	CONDITION :		
	[DRILL	ING					MATERIAL					FRACTURES		
PROG & CASING & CASING	BURLING & CASING & CASING BUB WATER LOSS FIELD TESTS SAMPLES & SAMPLES & FIELD TESTS FIELD TESTS C DEPTH (m) C RL (m AHD) C RL (m AHD)				C DEPTH (m)	GRAPHIC LOG	DESCRIPTION ESTMATED STRENGT- ls(50) ROCK TYPE : Grain size, Colour, Structure (texture, fabric, mineral composition, hardness alteration, cementation, etc as applicable) Protection						ADDITIONAL DATA (joints, partings, seams, zones, etc) Description, apparent dip, infilling or coating, shape, roughness, thickness, other, [true dip, dip direction		
					-		0.69m START COF	RING AT 0.69m							
	A	0% LOSS	100	ls(50) a=1.24	-		SILTSTONE grained sand	: dark grey, 0-10% pale grey, fi Istone laminations, bedding at 0	ne)-5°,	F					
				Is(50)	1.0		with interbed	ded sandstone bands							
				a=0.14			1.70-2.00m:	pale grey					—1.95: BP 10° Clay FILLED PR RF 5mm —2.27: BP 5° PR RF —2.36: JT 30° CN PR S		
	24/05/241	3.08 0% LOSS	100	ls(50) a=1.4 ls(50) a=1.19	3.0 — ^{15.7} —								—3.32: BP 5° MU CT PR S		
Наз-	0-5%			ls(50) a=1.32									—4.53: BP 5° Clay CT PR S		
		6.08		ls(50) a=2.88	5.0- ¹³⁷ - - - - - - - - - - - - - - - - - - -		5.50m INTERBEDD SILTSTONE grey siltstone sandstone, b	DED AND INTERLAMINATED AND SANDSTONE: 40-80% of p. 20-60% pale grey, fine graine deding at 0-5°	dark ed				—5.61: BP 10° X VNR PR S		
		LOSS	100	ls(50) a=1.79	-								—6.40: JT 70° MU PR healed —6.57: BP 5° X VNR PR S		
				ls(50) a=0.53	7.0		7.80m						—7.43: JT 20° CN PR RF		
					80-	<u> ::::</u> :	SANDSTON grey siltstone	E: Tine grained, pale grey, 0-20 e laminations, bedding at 0-5°,	1% dark						
					10.7										

File: 228571.00 BH405 RevA 2 OF 3

PROJECT : Proposed Hotel and Apartments											LOG HOLE NO : BH405 FILE / JOB NO : 228571.0					
LOC	ATIC	N : 4	102 M	acquarie	Street,	, Liverp									SHEET : 3 OF 3	
POS		N:E = · н	E: 307	704.7, N	1: 62438 MO	396.0 (5 11 INITINI	i6 MGA2020)	SURFACE ELEVAT	ION : 18.7	70 (AHD)	ockwell	ANGLE F	ROM	HORIZONTAL : 90°	
DAT	EST		D: 1	/5/24	DATE		PLETED : 2/5/2	4 DATE LOG	GED : 1/5	5/24		LOGGE	DBY: A	AS	CHECKED BY : LJH	
CAS	ING	DIAME	TER	: HW		BA	RREL (Length)	: BIT :					-	BIT	CONDITION :	
			ING					MATERIAL							FRACTURES	
& CASING &	WATER LOSS	HE RUN %)	RQD (%)	SAMPLES & FIELD TESTS	DEPTH (m) RL (m AHD)	GRAPHIC LOG	ROCK TYPE (texture, fabric, alteration, ce	DESCRIPTION Grain size, Colour, S mineral composition, mentation, etc as app	Structure hardness blicable)	Weathering	ESTIMATED اs(5 O-Dia 0-Dia 0-Dia 0-Dia	STRENGTH 50) Axial imetral	NATUR FRACTL (mm)		ADDITIONAL DATA (joints, partings, seams, zones, etc) Description, apparent dip, infilling or coating, shape, roughness, thickness, other, [true dip, dip direction	
		0% LOSS	100		10.7		SANDSTON grey siltston	E: fine grained, pale grey, (a laminations, bedding at 0-)-20% dark 5°,	F						
				le(50)	-		(continued)	, , ,	- /						-	
				a=3.01	-										-	
															-	
					-									¦ 💥	-	
		9.07			9.0-										-	
		0% LOSS	100		-										-	
				ls(50)											9.30: BP 0° CN PR S 9.42: BP 0° CN PR S	
				a=2.47	_											
					-										-	
				ls(50) a=3.55	10.0-		10.20m							¦ 🐰	-	
							INTERBEDI	DED AND INTERLAMINAT	ED						-	
							SILTSTONE grey siltston	AND SANDSTONE: 60-80 e, 20-40% pale grey, fine gr vodding at 0.5°)% dark 'ained		ÌÌÌ				-	
					-		sanusione, i	edding at 0-5								
					-						İİİ		Li i i		-	
3	%				11.0-	.""									_	
В Н	- 0-5			I=(50)	7.7											
				a=1.48]										
					-											
														¦ 💥	-	
															-	
		12.06			12.0-									¦ 🞇	-	
		0% LOSS	100		6.7		ļ								-	
					_									🐰		
				ls(50) a=1.7	-									¦ 🐰	-	
															-	
					13.0-						ÌÌÌ		i i i	i 📓	-	
					-										-	
5											i i i		liii.		-	
					-										-	
				ls(50)										🐰		
	V	14.10		a=2.05 ls(50) a=1.95	4.7	<u></u>	14.10m		14.10 m							
					-		Target depth		14.10111						-	
															-	
															-	
					-										-	
					15.0 -										_	
					3.7											
											ÌÌÌ	i i i	liii.	i i l		
		1			-]									-	
		1			-	1									-	
															-	
					-16.0		<u> </u>		I							
1															vy Douglas	

RMS LIB 40.3.14 - NEW LOGO.GLB Log RTA CORED DRILL HOLE 4 228571.00 LOGS.GPJ <-DrawingFile>> 30/May/2024 11:24 10.02.00.04 Datgel Tools

File: 228571.00 BH405 RevA 3 OF 3

PR	OJEC ⁻ CATIC	T : F)N : 4	Propos 102 M	sed Hote acquarie	el and A	partm Liver	NO nents	N-CORE DRILL HOLE - GEOLOGICAL L	.00	6	HOLE NO : BH406 FILE / JOB NO : 228571.00 SHEET : 1 OF 4
PO	SITIO	N : E	: 307	696.8, N	1: 62438	396.9	(56 M	GA2020) SURFACE ELEVATION : 18.90 (AHD) AN	GLE	FROM	I HORIZONTAL : 90°
RIC	G TYPE	E : H	anjin l	DB8	MO		NG:	Track CONTRACTOR : Rockwell	۲		
	31		د . <i>ت</i> .	017124					· · · ·		
		DF	RILLIN	G			1_	MATERIAL	1		Γ
PRILLING BRILLING	OGRESS	DRILLING	GROUND WATER LEVELS	SAMPLES & FIELD TESTS	DEPTH (m)	GRAPHIC LOG	CLASSIFICATION SYMBOI	MATERIAL DESCRIPTION Soil Type, Colour, Plasticity or Particle Characteristic Secondary and Minor Components	MOISTURE CONDITION	CONSISTENCY RELATIVE DENSITY	STRUCTURE & Other Observations
	•				18.9			SILTSTONE: dark grey, apparently medium strength			ROCK
	p		ved								
- AD/T V Casi		н	t Obsel								
1 	:		Not								
	,				10-			1.00m			
					17.9			Continued as Cored Drill Hole			
					20-						
					2.0						-
						1					
					3.0 -						-
					-	1					-
					-	1					-
(0					-						-
el Tool:					-						
4 Datg					4.0 — 14.9						_
02.00.0					-						
26 10.0					-						
024 11:					-						
/May/2					-						
e>> 3(5.0 — ^{13.9}	1					-
wingFil						1					-
< <dra< td=""><td></td><td></td><td></td><td></td><td></td><td>1</td><td></td><td></td><td></td><td></td><td></td></dra<>						1					
S.GPJ					-						
00 LOG					-	1					
28571.0					6.0 12.9	1					-
LE 2 2						1					
LL HO					-	1					-
RI DRI					-						
N-COF					-						
TA NC					7.0						-
s Log R					-						
O.GLE					-						
N LOG					-						-
4 - NE)					-						
F. 40.3.1	Explar	 hatory l	Notes 1	for	8.0 10.9	L		1		1	
≝ deta SN & b	ails of a asis of	bbrevi descrip	ations otions.								P Dougias

DE		ст .	Propos	ed Hote	l and A	nartme	unts.	ORED D	RILL HO	LE	LOG				HOLE NO : BH406 FILE / JOB NO : 228571.00
LC	CAT	ION :	402 M	acquarie	Street,	Liverp	ool								SHEET : 2 OF 4
P(RI	DSITI G TY	ON : PF · F	E: 307 Ianiin I	696.8, N 788	: 62438 MO	896.9 (5 UNTIN	G · Track	SURFACE ELE	CONTR	3.90 (ACT	$\frac{AHD}{DR \cdot Rc}$	ckwell	ANGLE	FROM DRI	HORIZONTAL : 90°
D	ATE S	START	ED : 3	0/4/24	DATE	COM	PLETED : 1/5/24	4 DATE	LOGGED : 30	0/4/24	4 L	OGGEI	DBY:	AS	CHECKED BY : LJH
C/	ASING	G DIAM	ETER	: HW		BA	ARREL (Length)	: BIT	:					BIT	CONDITION :
PR	OGRE		LING	a io			1	MATERIAL		_	ESTIMATED	STRENGTH	NATU	RAL	
DRILLING	& CASING		RQD (%)	SAMPLES	681 O DEPTH (m 680 O DEPTH (m 681 (m AHD	GRAPHIC LOG	ROCK TYPE : (texture, fabric, alteration, cer	DESCRIPTION Grain size, Colo mineral composi mentation, etc as	our, Structure tion, hardness applicable)	Weathering	الارة A-O-Diar توبي تي توبي تي توبي تي توبي تي	0) xial metral	FRACT (mm	URE) () () () () () () () () ()	 (joints, partings, seams, zones, etc.) Description, apparent dip, infilling or coating, shape, roughness, thickness, other, [true dip, dip direction
		2.09 0% LOSS	96 3 3 3 3	Is/50) a=0.47			1.00m START COR SILTSTONE grained sand with interbedo 1.90-2.40m:	NING AT 1.00m : dark grey, 0-10% pa : dork grey, 0-10% pa : dork grey, 0-10% pale grey	ile grey, fine idding at 0-5°,	F SW F					
		3.10 0% LOSS	99	ls(50) a=0.99 ls(50) a=1.79	3.0										—2.40: JT 15° CN PR RF
2024 11:24 10.02.00.04 Datgel Tools H03	0.5%			ls(50) a=0.65											—3.76: BP 5° Clay FILLED PR S 10mm
71.00 LOGS.GPJ < <drawingfile>> 30/May/</drawingfile>		6.10	100	ls(50) a=1.2	5.0- ¹³⁹ - - 6.0- ¹²⁹		5.80m INTERBEDD SILTSTONE grey, fine gra siltstone, bec	DED AND INTERLAM AND SANDSTONE: Inited sandstone, 30-5°	IINATED 50-70% pale 50% dark grey						—5.55: BP 5° PR S —5.77: BP 5° PR S
B Log RTA CORED DRILL HOLE 4 2285		LÖSS		ls(50) a=0.76	7.0- 11.9		7.00m SILTSTONE	: dark grey		_					—6.33: BP 5° Clay PR S
40.3.14 - NEW LOGO.GL				ls(50) a=0.71	- - 8.0 10.9		7.65-8.10m:	crushed zone		SW - F					7.47: BP 5° Clay CT PR RF 7.48: JT 10° CN PR RF
RMS LIE															

File: 228571.00 BH406 RevA 2 OF 4

	PRC	JEC	:Т:F	Propos	sed Hote	I and A	partme	nts	ORED DR	ILL HOI	LE	LOG			HOLE NO : BH406 FILE / JOB NO : 228571.00
			DN : 4	102 Ma =- 307	acquarie	Street	Liverp			ΔΤΙΟΝ · 18	<u>an (</u>			ОМН	
	RIG	TYP	E : H	anjin [DB8	. 02430 MO		G : Track		CONTRA	. <u>эо (</u> АСТ(OR : Rockwell		ORILL	ER :
Ī	DAT	E ST	ARTE	D: 3	0/4/24	DATE	COMF	PLETED : 1/5/24	DATE L	DGGED : 30)/4/24	4 LOGGE	ED BY:AS		CHECKED BY : LJH
	CAS	ING	DIAME	TER	: HW		BA	RREL (Length)	BIT :				E	BIT CO	ONDITION :
ł			DRILL	ING	~ (0	1			MATERIAL			ESTIMATED STRENGTH	NATURAL		
-		WATER LOSS	E CORELOS E CORELOS	RQD (%)	SAMPLES 8 FIELD TEST	DEPTH (m)	CRAPHIC LOG	ן ROCK TYPE : (texture, fabric, ו alteration, cer	DESCRIPTION Grain size, Colou nineral compositi nentation, etc as	r, Structure on, hardness applicable)	Weathering	ls(50) ●-Axial O-Diametral ઽું ઙ૿ૣ ન જ ર ઽું ਙ ਸ਼ 못 ਛ		CORE	(joints, partings, seams, zones, etc) Description, apparent dip, infilling or coating, shape, roughness, thickness, other, [true dip, dip direction]
			0% LOSS	100		10.9		SILTSTONE: 8.20m	dark grey (continued)		F				-8.09: JT 45° Clay CT PR RF
						-		SANDSTONI grey siltstone	E: fine grained, pale gr interbeds, bedding at	ey, 0-40% dark)-5°,					-
					ls(50) a=2.14	-									-
			9.05 0% LOSS	97		9.0 — ^{9.9}	· · · · · · · · · · · · · · · · · · ·								
						-									-9.58: BP 0° CN PR S
					ls(50) a=3.42	- 10.0-									-
						-									–10.20: JT 70° MU PR RF – –10.30: JT 60° MU healed –
					ls(50) a=2.09	-									-
						7.9									-
sl						-	· · · · · · · · · · · · · · · · · · ·								-
.00.04 Datgel Toc	HQ3	0-5%	12.10 0% LOSS	100	ls(50) a=6.09	12.0 — 6.9	· · · · · · · · · · · · · · · · · · ·								-
2024 11:24 10.02						-		12.80m INTERBEDD	ED AND INTERLAMI	IATED					-
ile>> 30/May/2					ls(50) a=1.8	13.0 — ^{5.9} —		SILTSTONE grey siltstone sandstone, b	AND SANDSTONE: 6 , 20-40% pale grey, fir edding at 0-5°	0-80% dark e grained					12.96: BP 5° X VNR PR S
PJ < <drawingf< td=""><td></td><td></td><td></td><td></td><td>ls(50) a=2.2</td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td></drawingf<>					ls(50) a=2.2	-									-
571.00 LOGS.GI															-
L HOLE 4 228					ls(50) a=1 05	-									-
CORED DRIL			15 10		u-1.d0	-									-
J.GLB Log RTA			0% LOSS	99	ls(50) a=3.15	3.9									15.27: BP 5° X VNR PR S
14 - NEW LOGC						-									-
RMS LIB 40.3.1			<u> </u>	II		16.0 2.9	<u> </u>	J			1				

LICOLTION: 400 Meagune Binel, Liengod SURPACE LEVATION: 15.00 (AHD) ANGLE FROMHORIZONIAL: 00" NG TYPE: Hangin DBB MOUNTING: TROK CONTINUCTOR: Rockwell DRULTR: NG TYPE: Hangin DBB MOUNTING: TROK CONTINUCTOR: Rockwell DRULTR: ND TYPE: Hangin DBB MOUNTING: TROK CONTINUCTOR: Rockwell DRULTR: DT E STATED: SURVACE DIFF. UNIT BL DATE LOGGEO BY: AS DIT CONDITION: DT DULTRG: MOUNTING: TROK DESCRIPTION BIT CONDITION: DT DULTRG: MOUNTING: TROK DESCRIPTION: BIT CONDITION: DT DUTRC: DESCRIPTION: DESCRIPTION: DESCRIPTION: S	PRO	JECT	T:F	Propos	ed Hote	I and A	partme	nts		ILL HOI	LEI	LOG				FILE /	E NO : B	H406 228571.00	
MC TYPE Learning MC TWO THOR TO ALL CONTROL TO ALL CONTR	LOC		N : 4	02 Ma	acquarie	Street	Liverp	001 6 MGA20201		ATION · 18	90 (4				ROM	HORIZ		- 90°	
DATE STATED 204/24 DATE CORED 1: 304/24 LOGGE DY: AS OHECKED Y: LH CENNO DUMETER HW MATE NUMBER BIT CONCORD BIT CONCORD FRACEURATION	RIG	TYPE	 Е:н	anjin [DB8	MO	UNTIN	G : Track		CONTRA	ACTO)R : Ro	ckwell		DRIL	LER :			
LCB/HILD CUMAR LEFT. HW BARFEL (Leggin) BIT : BIT : BIT CONDITION : PROCENDS BT Common Control (Leggin) BIT : BIT : BRATERIAL PROCENDS BT Common Control (Leggin) DECAMPICAL (Leggin) DECAMPICAL PRACE TURKS PROCENTS BT Common Control (Leggin) DECAMPICAL (Leg	DATE	E ST	ARTE	D: 3	0/4/24	DATE	COMF	PLETED : 1/5/24	DATE LC	GGED : 30)/4/24	L	OGGEI	DBY:A	S		CHECKE	BY : LJH	
MODICALE Control Contro Control <thcontrol< th=""> <th< td=""><td>CASI</td><td>NG [</td><td></td><td></td><td>: HW</td><td></td><td>BA</td><td>RREL (Length)</td><td>BIT :</td><td></td><td></td><td></td><td></td><td></td><td>BIT</td><td></td><td>TION :</td><td></td><td></td></th<></thcontrol<>	CASI	NG [: HW		BA	RREL (Length)	BIT :						BIT		TION :		
Normalian Statute	PROGI	RESS	S		s S	22	0				5	ESTIMATED S		NATUR	AL		ADDITIC	NAL DATA	
	DRILLING & CASING	WATER LOSS	E (CORE LO HIT RUN %)	RQD (%)	SAMPLES FIELD TES ⁻	DEPTH (m 0.91 DEPTH (m 0.91	GRAPHIC LOG	ROCK TYPE : (texture, fabric, r alteration, cer	Grain size, Colour nineral composition nentation, etc as a	, Structure on, hardness pplicable)	Weatherin	IS(JU A-A O-Dian -7 0 -0 -7 V - V	/) dal netral 또 못 표	FRACTU (mm)		joir De c thickn	nts, partings scription, ap or coating, s less, other,	, seams, zone oparent dip, ir hape, roughn [true dip, dip o	es, etc) nfilling ess, directio
V V 20.10 MM2 20.10 Image: Logic line Image:	- HQ3	- 0-5%	18.10 0% LOSS	99	ls(50) a=1.59 ls(50) a=1.58 ls(50) a=2.88 ls(50) a=2.25	- 16.0		INTERBEDD SILTSTONE grey siltstone sandstone, br	ED AND INTERLAMIN AND SANDSTONE: 60 , 20-40% pale grey, fine dding at 0-5° <i>(continue</i>	ATED -80% dark 9 grained <i>j</i>	F					16.23:	: BP 5° CN P	R S	-
		•	20.10		16(50) a=2.43	20.0		20.10m BOREHOLE Target depth	BH406 TERMINATED .	AT 20.10 m									

HOLE NO : BH301_w

File: 228571.00 BH304_w 1 OF 1

POSITION : E 307704.7 N. 623986.0 (66 MGA2020) SURFACE ELEVATION : 18.70 (AHD) ADD CENTRATOR : Rockwell DATE STARTED : 1/5/24 DATE COMPLETED : 2/5/24 DATE LOGGED :: 1/5/24 LOGGED BY : AS CHE DRILLING MATERIAL (See geodechnical log for sollrock detail) DATE STARTED :: 1/5/24 DATE COMPLETED :: 2/5/24 DATE LOGGED :: 1/5/24 LOGGED BY : AS CHE DRILLING MATERIAL (See geodechnical log for sollrock detail) DOTOR SURFACE ELEVATION :: 18.70 (AHD) ABL :: 10000000 SURFACE ELEVATION :: 18.70 (AHD) ABL :: 1000000 SURFA	AL · 90°
DATE STARTED: 1/5/24 DATE COMPLETED: 2/5/24 DATE LOGGED I: 1/5/24 LOGGED BY: AS CHE DRULING MATERIAL PIEZOMETER CONSTRUCTION DE PIEZOMETER CONSTRUCTION DE PIEZOMETER CONSTRUCTION DE PIEZOMETER CONSTRUCTION DE PROORESS Bangese Site Us A R. To DekriA R. To Dekri A R. To Dekri A R. </th <th></th>	
DRILLING MATERIAL PIEZOMETER CONSTRUCTION DE Processing is a single in the second sec	CKED BY :
PROGRESS Bits (b, k, R) To Down AM To Do	
State Fig. 0 Si 000 (See gedethnical log for soll/nock detail) State Construction State State State State Construction State State State State State State State State State State State St	Istallation Date Static Water Leve
00 00 00 00 000000 01 0.000 0.00000 0.00000 0.00000 020000 0.00000 0.00000 0.00000 0.00000 0200000 0.00000 0.00000 0.00000 0.00000 0200000 0.00000 0.00000 0.00000 0.00000 0200000 0.00000 0.00000 0.00000 0.00000 0200000 0.000000 0.00000000000 0.000000000000 0.00000000000000000000000000000000000	
01 020m 01 020m 01 020m 01 020m 01 020m 01 020m 01 020m 01 020m 02 020m 03 020m 04 020m 05 020m 020m 020m	i stick up
Bin STONE and grey 0-10% paie grey, the grey	ite
0 0 1.70-2.00m pale grey 1.70-2.00m pale grey	
0 0 5.50m 1 0 5.50m 1 0 5.50m 1 0 0 1 0 <	
B 4.0 -	
E 4.0 -	
OP 0 5.50m SILTSTONE AND SANDSTONE: 40-80% dark grey siltstone, 20-60% pale grey, fine grained sandstone, bedding at 0-5°; fresh, medium to very high strength SILTSTONE AND SANDSTONE: 40-80% dark grey siltstone, 20-60% pale grey, fine grained sandstone, bedding at 0-5°; fresh, medium to very high strength 8.0 7.80m 7.80m 90 8.0 7.80m 91 10.0 10.20m	
E INTERBEDDED AND INTERLAMINATED SILTSTONE AND SANDSTONE: 40-80% dark grey siltstone, bedding at 0-5°; fresh, medium to very high strength INTERBEDDED AND INTERLAMINATED SILTSTONE AND SANDSTONE: 40-80% dark grey siltstone, bedding at 0-5°; fresh, medium to very high strength INTERBEDDED AND INTERLAMINATED SANDSTONE: fine grained, pale grey, 0-20% dark grey siltstone laminations, bedding at 0-5°; fresh, high to very high strength INTERBEDDED AND INTERLAMINATED SANDSTONE: fine grained, pale grey, 0-20% dark grey siltstone laminations, bedding at 0-5°; fresh, high to very high strength	
Product 7.80m SANDSTONE: fine grained, pale grey, 0-20% dark grey siltstone laminations, bedding at 0-5°; fresh, high to very high strength	
B Image: Same stand/given strength B Image: Same stand/given strength B Image: Same stand/given strength B Image: Same strength Image: Same strength Image: Same stren	
PVC si	ravel
	otted screen
Grey siltstone, 20-40% pale grey, fine grained sandstone, bedding at 0-5°; fresh, high to very high strength	
V V I4.0 I4.10m I4.10m (4.60) IA.10m (4.60) <td>ар</td>	ар
This report of well/VWP installation must be read in conjunction with accompanying notes and abbreviations. The geotechnical log is a summary only and the detailed log should be referred to for strata details and any core loss zones.	

r

File: 228571.00 BH405_w 1 OF 1

Appendix D

Permeability Testing

Packer Testing

Rising Head Tests

WATER PRESSURE TEST RESULTS

	PAR	TNER	s P												
Client :	The	Grand	Liverpool F	Pty Ltd							Pr	oject No. :		2:	28571
Project	: Pro	posed	Hotel and A	partments	\$							Bore :		В	H301
Locatic	on: 402	2 Macqu	Jarie Street	, Liverpoo	1						Tes	t section :		8.70	-28.15m
Test De	tails														
Date:			8.05.2024		Bottom of p	backer (m):	8.70		Height of p	pressure gauç	ge (m):		1.0		Drum Area (m ²):
Bore diar	neter (mm	ı):	96		Bore depth	ı (m):	28.15		Vertical De	epth to ground	dwater (m):		8.7		0.264
Bore incli	nation (de	eg):	90		Section ler	igth (m):	19.45		(or depth te	o base of pac	cker)				
Hg = gau	ge pressu	ıre, HI =	head loss in r	ods and pa	cker, Hw = (gauge heigh	nt + groundw	ater depth)x	9.81, Total	= Hg+Hw-Hl					
PRESSU	RE			Test				FLOW	RATES			_	Water	Lugeons	Approx
Hg		HI	Total	Duration	Initial	Flowmete	r Total	D	rum readin	i gs Equivalent	Leakage	Assigned	Loss	(I/m/min.at	Permeability
(kPa) (kPa)	(kPa)	(min)	(litres)	(litres)	(litres)	(mm)	(mm)	litres	(litres)	(litres)	(l/m/min)	1000 kPa)	(m/sec)
50		0	145	5	886.0	907.0	21.0	700.0	630.0	18.5	0.0	21.0	0.2	1.5	1.5E-07
50		0	145	5	907.0	929.0	22.0	630.0	580.0	13.2	0.0	22.0	0.2	1.6	1.6E-07
50		0	145	5	929.0	949.0	20.0	580.0	500.0	21.1	0.0	20.0	0.2	1.4	1.4E-07
					-										
								-							
					1		-	1							
110		0	205	5	077.0	1021.0	44.0	610.0	460.0	20.6		44.0	0.5	2.2	2.25.07
110		0	205	5	977.0	1021.0	44.0	610.0	460.0	39.0		44.0	0.5	2.2	2.22-07
110		0	205	5	1021.0	1059.0	38.0	460.0	320.0	37.0		38.0	0.4	1.9	1.9E-07
110		0	205	5	1067.0	1124.0	57.0	520.0	320.0	52.8		57.0	0.6	2.9	2.9E-07
								+				ļļ			
160		0	255	5	1148.0	1213.0	65.0	690.0	450.0	63.4		65.0	0.7	2.6	2.6E-07
160		0	255	5	1251.0	1322.0	71.0	800.0	500.0	79.3		71.0	0.7	2.9	2.9E-07
160		0	255	5	1322.0	1386.0	64.0	500.0	300.0	52.8		64.0	0.7	2.6	2.6E-07
110		0	205	5	1420.0	1480.0	60.0	700.0	550.0	39.6		60.0	0.6	3.0	3.0E-07
110		0	205	5	1480.0	1518.0	38.0	550.0	400.0	39.6		38.0	0.4	19	1 9E-07
110		0	205	5	1518.0	1566.0	48.0	400.0	240.0	42.3		48.0	0.5	24	2 4E-07
110		0	200		1010.0	1000.0	40.0	400.0	240.0	42.0			0.0	2.7	2.42 07
					-		-								
					+			+							
				_											
50		0	145	5	1587.0	1608.0	21.0	700.0	620.0	21.1		21.0	0.2	1.5	1.5E-07
50		0	145	5	1608.0	1632.0	24.0	620.0	530.0	23.8		24.0	0.2	1.7	1.7E-07
50		0	145	5	1632.0	1659.0	27.0	530.0	430.0	26.4		27.0	0.3	1.9	1.9E-07
Notes															
0.	80							Ave	rages		1		Luge	ens	
	70	– – Br	urgess line				Stage	Pressure	Water	Lugeons	0	0.5	(I/m/min at 1 1.5	2 2.5	3 3.5
0.	/0				3			(kPa)	LOSS (I/m/min)	(I/m/min at 1000kPa)					
(in 0.	60				1		1	145	0.22	1.49	145				
j 0.1	50 -			- 1			2	205 255	0.48 0.69	2.32 2.69	, Fa)				
) ss 0.	40			1/	<u></u>		4	205	0.50	2.44	9 205 -				_
<u> </u>			1				5	145	0.25	1.70	ssur				_
Vate	30		/ 1	3			Houlsby Fl	ow Pattern	Dil	ation	6 255				
> 0.1	20	1		3			Houlsby Lu	ugeon value		2	, tal			_	
0	10	1					Durgess Lt	Jyeon value	L	J	¹ ²⁰⁵				

250

300

145

Calculated: SI Checked: LJH Date: 15-May-24

100

50

150

Total Pressure (kPa)

200

0.10

0.0<mark>00.00</mark>

WATER PRESSURE TEST RESULTS

	PARTNE	r s 🗾												
Client :	The Gran	d Liverpool	Pty Ltd							Pr	oject No. :	228571.00		
Project :	Proposed	Hotel and A	Apartments	;							Bore :	BH302		
Location	: 402 Macq	uarie Stree	t, Liverpoo							Tes	t section :	9.50-25.30	n	
Test Detai	ls													
Date:		9.05.2024		Bottom of	packer (m):	9.50		Height of p	oressure gaug	ge (m):		1.0		Drum Area (m ²):
Bore diamet	ter (mm):	96		Bore depth	n (m):	25.30		Vertical De	epth to ground	dwater (m):		9.5		0.264
Bore inclina	tion (deg):	90		Section ler	ngth (m):	15.80		(or depth t	o base of pac	cker)				
Hg = gauge	pressure, HI =	head loss in	rods and pad	cker, Hw = (gauge heigh	t + groundwa	ater depth)x	9.81, Total	= Hg+Hw-Hl					
PRESSURE		1 =	Test		-		FLOW	RATES				Water	Lugeons	Approx
Hg	н	l otal	Duration	Initial	Fiowmete	Total	Initial	Final	Equivalent	Leakage	Flow	LOSS	(l/m/min at	Permeability
(kPa)	(kPa)	(kPa)	(min)	(litres)	(litres)	(litres)	(mm)	(mm)	litres	(litres)	(litres)	(l/m/min)	1000 kPa)	(m/sec)
50	0	153	5	723.0	729.0	6.0	760.0	730.0	7.9		6.0	0.1	0.5	5.0E-08
50	0	153	5	729.0	744.0	15.0	730.0	690.0	10.6		15.0	0.2	1.2	1.2E-07
50	0	153	5	744.0	752.0	8.0	690.0	670.0	5.3		8.0	0.1	0.7	6.6E-08
	_													
100	0	203	5	758.0	769.0	11.0	640.0	610.0	7.9		11.0	0.1	0.7	6.9E-08
100	0	203	5	769.0	778.0	9.0	610.0	580.0	7.9		9.0	0.1	0.6	5.6E-08
100	0	203	5	778.0	788.0	10.0	580.0	540.0	10.6		10.0	0.1	0.6	6.2E-08
	_													
	_													
150	0	253	5	792.0	803.0	11.0	500.0	480.0	5.3		11.0	0.1	0.6	5.5E-08
150	0	253	5	803.0	812.0	9.0	480.0	460.0	5.3		9.0	0.1	0.5	4.5E-08
150	0	253	5	812.0	823.0	11.0	460.0	430.0	7.9		11.0	0.1	0.6	5.5E-08
100	0	203	5	832.0	841.0	9.0	750.0	720.0	7.9		9.0	0.1	0.6	5.6E-08
100	0	203	5	841.0	849.0	8.0	720.0	690.0	7.9		8.0	0.1	0.5	5.0E-08
100	0	203	5	849.0	856.0	7.0	690.0	660.0	7.9		7.0	0.1	0.4	4.4E-08
			_											
50	0	153	5	859.0	865.0	6.0	650.0	635.0	4.0		6.0	0.1	0.5	5.0E-08
50	0	153	5	865.0	869.0	4.0	635.0	615.0	5.3		4.0	0.1	0.3	3.3E-08
50	0	153	5	869.0	874.0	5.0	615.0	590.0	6.6		5.0	0.1	0.4	4.1E-08
	_													
Notes										ļ	ļ			
0.14	1						Ave	rages		1		Luge	30NS 1000 kPa)	
0.12	B	urgess line	1 2	3		Stage	Pressure	Water	Lugeons (I/m/min.at	0	0.2	0.4 0.6	0.8 1	1.2 1.4
0.12				1			(kPa)	(l/m/min)	1000kPa)	153				<u> </u>
u, 0.10	+		4			1	153 203	0.12 0.13	0.80 0.62					
L 0.08			1/			3	253	0.13	0.52	ed y 203				
sso		1 1	5			4 5	203 153	0.10 0.06	0.50 0.41	nre				
- 0.06		/					D			S 253				
8 0.04	+	1				Houlsby Fl	ow Pattern	Void	r Filling	<u>ک</u>				

250

300

150

Total Pressure (kPa)

200

Houlsby Flow Pattern Houlsby Lugeon value Burgess Lugeon value

Total Pressure (kPa)

153

0.4 0.5

Calculated: SI Checked: LJH Date: 15-May-24

50

100

0.04

0.02

0.000.00

WATER PRESSURE TEST RESULTS

	PARTNEF	R S D												
Client :	The Grand	d Liverpool	Pty Ltd							Pre	oject No. :	228571.00		
Project :	Proposed	Hotel and A	Apartments	5							Bore :	BH303		
Location	: 402 Macq	uarie Street	t, Liverpoo	I						Tes	t section :	14.00-24.15	ōm	
Test Detai	ls													
Date:		3-May-24		Bottom of	packer (m):	14.00		Height of p	oressure gaug	je (m):		1.0		Drum Area (m ²):
Bore diamet	er (mm):	96		Bore depth	n (m):	24.15		Vertical De	epth to ground	dwater (m):		9.7		0.264
Bore inclination	tion (deg):	90		Section ler	ngth (m):	10.15		(or depth t	o base of pac	ker)				
Hg = gauge	pressure, HI =	head loss in	rods and pa	cker, Hw = (gauge heigh	+ groundw	ater depth)x	9.81, Total	= Hg+Hw-Hl					
PRESSURE	I ui	Total	Test		Flowmoto		FLOW	RATES	ac.	Lookago	Assigned	Water	Lugeons	Approx
ng		Total	Duration	Initial	Final	Total	Initial	Final	Equivalent	Leakage	Flow	2033	(I/m/min at	remeability
(kPa)	(kPa)	(kPa)	(min)	(litres)	(litres)	(litres)	(mm)	(mm)	litres	(litres)	(litres)	(l/m/min)	1000 kPa)	(m/sec)
50	0	155	E	242.0	248.0	6.0	180.0	208.0	7.4	0.0	6.0	0.1	0.9	7.65.09
50	0	155	5	242.0	240.0	10.0	208.0	200.0	7.4	0.0	10.0	0.1	1.2	1.3E.07
50	0	155	5	258.0	260.5	2.5	235.0	250.0	4.0	0.0	2.5	0.0	0.3	3.2E-08
50	0	155	5	260.5	260.5	0.0	250.0	254.0	11	0.0	11	0.0	0.0	1.3E-08
		100	0	200.0	200.0	0.0	200.0	204.0		0.0		0.0	0.1	1.02 00
110	0	215	5	260.5	260.5	0.0	260.0	265.0	1.3	0.5	0.8	0.0	0.1	7.5E-09
110	0	215	5	260.5	260.5	0.0	265.0	267.0	0.5	0.0	0.5	0.0	0.0	4.8E-09
110	0	215	5	260.5	260.5	0.0	267.0	270.0	0.8	0.0	0.8	0.0	0.1	7.3E-09
160	0	265	5	260.5	260.5	0.0	270.0	277.0	1.8	0.5	1.3	0.0	0.1	1.0E-08
160	0	265	5	260.5	260.5	0.0	277.0	280.0	0.8	0.0	0.8	0.0	0.1	5.9E-09
160	0	265	5	260.5	260.5	0.0	280.0	280.0	0.0	0.0	0.0	0.0	0.0	0.0E+00
110	0	215	5	260.5	260.5	0.0	280.0	282.0	0.5	0.4	0.1	0.0	0.0	1.2E-09
110	0	215	5	260.5	260.5	0.0	282.0	285.0	0.8	0.0	0.8	0.0	0.1	7.3E-09
110	0	215	5	260.5	260.5	0.0	285.0	286.0	0.3	0.0	0.3	0.0	0.0	2.4E-09
50	0	155	5	260.5	260.5	0.0	286.0	286.0	0.0	0.4	0.0	0.0	0.0	0.0E+00
50	0	155	5	260.5	260.5	0.0	286.0	286.0	0.0	0.0	0.0	0.0	0.0	0.0E+00
50	0	155	5	260.5	260.5	0.0	286.0	286.0	0.0	0.0	0.0	0.0	0.0	0.0E+00
Notes														
												Lugo	0.005	
0.12						Stage	Aver	ages Water	Lugeons	0	0.2	(I/m/min at	1000 kPa)	12 14
0.10	Bi	urgess line				Olage	(10-)	Loss	(I/m/min at	Ť	0.2	0.4 0.6	0.8 1	1.2 1.4
E						1	(KPa) 155	0.10	0.62	155	_			
ч 0.08			\uparrow			2	215 265	0.01 0.01	0.07 0.05	La)	-			
1) SS 0.06			$ \rangle$			4	215	0.01	0.04	215 : 2	-			
er lo						5	155	0.00	0.00	INS 265	-			
^{40.0}						Houlsby Fl	ow Pattern	Void	Filling	- Le				
0.02						Burgess Lu	ugeon value	<	:0.1	L ota	-			

Calculated: RT Checked: LJH Date: 15-May-24

3

250

300

5 150

Total Pressure (kPa)

200

100

50

155

Packer Test BH303 14-24.15.xlsx

0.0<mark>00.00</mark>

Permeability Testing - Rising Head Test Report

Client: Project: Location:	The Gra Propose 402 Mac	nd Liverpool d Hotel and A quarie Street	Pty Ltd Apartment t, Liverpoc	s ol	Project No:228571.00Test date:24-May-24Tested by:RT
Test Locatio Description: Material type:	n Standpip Bringelly	e in borehole Shale (siltstor	ne and san	dstone)	Test No.BH301Surface Level:27.3m AHD
Details of We Effective dian borehole dian Effective Leng	ell Installatic neter (2re) neter (2R) gth of well sc	on reen (Le)	100 100 18.25	mm mm m	Depth to water before test9.9mDepth to water at start of test21.02mDepth of top of gravel pack3.15mDepth of base of gravel pack28.15m
Test Results					
Time (min)	Depth (m)	Change in Head dH (m)	d H/Ho		
0	21.02	11.12	1.000		
1	20.82	10.92	0.982		
2	20.62	10.72	0.964		
3	20.42	10.52	0.946		
5	20.03	10.13	0.912		1.00 👞
7	19.66	9.76	0.878		
9	19.32	9.42	0.847		
13	18.68	8.78	0.790		
16	18.22	8.32	0.748		
19	17.80	7.90	0.711		2
23	17.35	7.45	0.670		
28	16.89	6.99	0.628		ation
33	16.47	6.57	0.591		
38	16.09	6.19	0.557		
43	15.73	5.83	0.525		
48	15.39	5.49	0.494		

Theory:

53

58

63

68

73 83

93

103

113

123

131

15.07

14.77

14.48

14.21

13.94

13.49

13.10

12.78

12.48

12.26

12.10

5.17

4.87

4.58

4.31

4.04

3.59

3.20

2.88

2.58

2.36

2.2

Falling Head Permeability calculated using equation by Hvorslev $k = [r^2 \ln(Le/R)]/2Le To$

0.465

0.438

0.412

0.387

0.363

0.323

0.288

0.259

0.232

0.212

0.198

where r = radius of casing

R = radius of well screen

0.10

0

20

40

60

To = 72.00 mins

Time (minutes)

4320 secs

80

100

120

Le = length of well screen

Hydraulic Conductivity	k =	9.4E-08	m/sec	
	=	8.1E-03	m/day	

Permeability Testing - Rising Head Test Report

Client: Project: Location:	The Gra Propose 402 Mac	nd Liverpool I d Hotel and A quarie Street	Pty Ltd Apartment , Liverpoo	s I	Project No: Test date: Tested by:	228571.0 24-May-2 RT	0 4
Test Locatio Description: Material type:	n Standpip Bringelly	e in borehole Shale (siltston	e and san	dstone)	Test No. Surface Level:	BH304 27.5	m AHD
Details of W	ell Installatio	on					
Effective diar	neter (2re)		100	mm	Depth to water before test	11.9	m
borehole diar	neter (2R)		100	mm	Depth to water at start of test	18.74	m
Effective Len	gth of well so	reen (Le)	10.24	m	Depth of top of gravel pack	3.14	m
1					Depth of base of gravel pack	22.14	m
Test Results	5						
Time (min)	Depth (m)	Change in Head dH (m)	d H/Ho				
0.0	18 7/	6.84	1 000				

		()		
0.0	18.74	6.84	1.000	
0.1	18.67	6.77	0.990	
0.2	18.57	6.67	0.975	
0.3	18.47	6.57	0.960	
0.4	18.36	6.46	0.945	
0.5	18.26	6.36	0.930	
0.6	18.16	6.26	0.915	
0.7	18.06	6.16	0.900	
0.8	17.40	5.50	0.804	
1.0	17.19	5.29	0.773	
1.2	16.99	5.09	0.745	
1.4	16.79	4.89	0.714	
1.7	16.48	4.58	0.670	
2.0	16.19	4.29	0.627	
2.3	15.90	4.00	0.584	
2.7	15.50	3.60	0.527	
3.1	15.11	3.21	0.470	
3.5	14.74	2.84	0.415	
3.9	14.35	2.45	0.358	
4.4	13.85	1.95	0.285	
4.9	13.41	1.51	0.221	0 5 10 15 20
5.4	13.09	1.19	0.174	Time (minutes)
6.2	12.70	0.80	0.116	
7.0	12.41	0.51	0.075	
7.8	12.22	0.32	0.046	
10.1	11.97	0.07	0.011	To = 3.80 mins
18.1	11.90	0	0.000	228 secs
Theory:	Falling Heak	ad Permeability Le/R)]/2Le To	calculated us	sing equation by Hvorslev where r = radius of casing R = radius of well screen Le = length of well screen To = time taken to rise or fall to 37% of initial change
Hydra	ulic Condu	ctivity	k = =	2.8E-06 m/sec 2.5E-01 m/day

30

40

Permeability Testing - Rising Head Test Report

Client: Project: Location:	The Grand Liverpool Pty Ltd Proposed Hotel and Apartments 402 Macquarie Street, Liverpool		Project No: Test date: Tested by:	228571.0 24-May-2 RT	0 4	
Test Location Description:	Standpipe in borehole			Test No. Surface Level:	BH405 18.7	m AHD
Material type:	Bringelly Shale (siltsto	ne and san	dstone)			
Details of Wel	I Installation					
Effective diame	eter (2re)	100	mm	Depth to water before test	2.92	m
borehole diame	eter (2R)	100	mm	Depth to water at start of test	12.87	m
Effective Length of well screen (Le)		11.18	m	Depth of top of gravel pack	1.10	m
				Depth of base of gravel pack	14.10	m
Test Results						

			=	1.1E-01	m/day	
Hydra	aulic Condu	ctivity	k =	1.3E-06	m/sec	
Гheory:	Falling He k = [r ² ln(ad Permeability Le/R)]/2Le To	v calculated us	ing equation by Hvo where r = radius o R = radius of well Le = length of well To = time taken to	rslev f casing screen l screen o rise or fall to 37%	6 of initial change
38.8	2.92	0	0.000			480 secs
28.8	3.00	0.08	0.008		To =	8.00 mins
18.8	3.09	0.17	0.018			
13.8	3.21	0.29	0.029			
12.8	3.24	0.32	0.033			
11.8	3.28	0.36	0.036			Time (minutes)
10.8	3.36	0.44	0.044	0	10	20
10.3	3.49	0.57	0.057	0.01		
9.8	3.85	0.93	0.094			
9.3	4.43	1.51	0.152			
8.8	4.70	1.78	0.179			
8.3	5.01	2.09	0.210		A A	
7.8	5.33	2.41	0.243		<u> </u>	
6.8	6.10	3.18	0.319	Jeac		
5.8	7.00	4.08	0.410			
4.8	7 73	4 81	0.483	tio	Î Î	
3.8	8.53	5.61	0.564	4/46	A	
2.4	9.72	6.16	0.005	o	X I	
2.0	10.22	7.30	0.733			
1.0	10.63	7.71	0.775			
1.2	10.93	8.01	0.805			
0.8	11.33	8.41	0.845	1.00		
0.6	11.59	8.67	0.871			
0.4	11.95	9.03	0.907	[
0.2	12.69	9.77	0.982			
0.0	12.87	9.95	1.000			
Time (min)	Depth (m)	Head dH (m)	d H/Ho			
				T		

Permeability Testing - Rising Head Test Report

Client: Project: Location:	The Grand Liverpool Pty Ltd Proposed Hotel and Apartments 402 Macquarie Street, Liverpool		s I	Project No:228571.00Test date:19-Jun-24Tested by:RT	
Test Locatio Description: Material type:	n Standpip Bringelly	e in borehole Shale (siltston	e and sand	dstone)	Test No.BH304Surface Level:27.5m AHD
Details of We Effective dian borehole dian Effective Len	ell Installation neter (2re) neter (2R) gth of well so	on creen (Le)	100 100 11.73	mm mm m	Depth to water before test10.41mDepth to water at start of test10.66mDepth of top of gravel pack3.14mDepth of base of gravel pack22.14m
Test Results Time (min)	Depth (m)	Change in	d H/Ho	7	
0.0	10.66		1 023		
0.03	10.63	0.23	0.912		
0.07	10.62	0.22	0.883	-	
0.10	10.62	0.21	0.854		
0.13	10.61	0.20	0.827		1.00
0.17	10.60	0.20	0.798		
0.23	10.59	0.18	0.750		
0.30	10.58	0.17	0.705		
0.42	10.56	0.15	0.629		
0.50	10.55	0.14	0.576		
0.60	10.54	0.13	0.525		
0.75	10.52	0.11	0.450		
0.83	10.51	0.10	0.411		
0.92	10.50	0.09	0.381		
1.00	10.49	0.08	0.349	-	-
1.08	10.49	0.08	0.322		
1.17	10.48	0.07	0.292		
1.25	10.48	0.07	0.273		
1.33	10.47	0.06	0.252		
1.67	10.45	0.04	0.174		
2.00	10.44	0.03	0.126		0 0.5 1 1.5 2 Time (minutes)

To = 0.90 mins 54 secs Theory: Rising Head Permeability calculated using equation by Hvorslev $k = [r^2 \ln(Le/R)]/2Le To$ where r = radius of casing R = radius of well screen Le = length of well screen To = time taken to rise or fall to 37% of initial change Hydraulic Conductivity 1.1E-05 k = m/sec 9.3E-01 m/day =

Permeability Testing - Falling Head Test Report

Client: Project: Location:	The Gra Propose 402 Mac	nd Liverpool d Hotel and A cquarie Street	Pty Ltd Apartments , Liverpoo	s I	Project No: Test date: Tested by:	228571.00 19-Jun-24 RT	
Test Locatio Description: Material type:	n Standpip Bringelly	e in borehole Shale (siltston	e and sand	dstone)	Test No. Surface Level:	BH304 27.5	m AHD
Details of We Effective dian borehole dian Effective Len	ell Installatic neter (2re) neter (2R) gth of well sc	on creen (Le)	100 100 11.73	mm mm m	Depth to water before test Depth to water at start of test Depth of top of gravel pack Depth of base of gravel pack	10.41 9.91 3.14 22.14	m m m
Test Results Time (min)	Depth (m)	Change in Head dH (m)	d H/Ho]			
0.0	9.91	0.50	1.661	-			
0.02	10.00	0.41	1.370	-			
0.03	10.06	0.35	1.168	-			
0.05	10.09	0.32	1.064				
0.07	10.11	0.30	0.996	1.0	10		
0.08	10.12	0.29	0.974	1			
0.10	10.13	0.28	0.928				
0.12	10.13	0.28	0.918				
0.13	10.15	0.26	0.878				
0.15	10.15	0.26	0.864	l oh			
0.17	10.16	0.25	0.831	dh			
0.18	10.16	0.25	0.820	Ratic			
0.20	10.17	0.24	0.798	ad F			
0.22	10.18	0.23	0.780	Ĕ			
0.23	10.18	0.23	0.767	_			
0.25	10.19	0.22	0.738	_			
0.28	10.20	0.21	0.710	_			
0.33	10.21	0.20	0.666	_			
0.42	10.24	0.17	0.550				
0.50	10.26	0.15	0.500		0 0.5 1	1.5	2
0.67	10.28	0.13	0.433	_			
0.83	10.29	0.12	0.389	_	Time (minutes	5)	
1.00	10.31	0.10	0.324	_			
1.17	10.33	0.08	0.273	_			
1.33	10.34	0.07	0.231	-	$T_0 = 0.00$ mino		
1.07	10.50	0.03	34 700		10 - 0.90 mins		
ļ	1	10.41	54.700	1	54 Secs		

Theory:

Falling Head Permeability calculated using equation by Hvorslev $k = [r^2 \ln(Le/R)]/2Le To$

where r = radius of casing

R = radius of well screen

Le = length of well screen

Hydraulic Conductivity	k =	1.1E-05	m/sec
	=	9.3E-01	m/day

Permeability Testing - Rising Head Test Report

Client: Project: Location:	The Gra Propose 402 Mac	The Grand Liverpool Pty Ltd Proposed Hotel and Apartments 402 Macquarie Street, Liverpool				Project No: Test date: Tested by:	228571.0 19-Jun-24 RT	0 4
Test Locatio Description: Material type:	n Standpip Bringelly	Standpipe in borehole Bringelly Shale (siltstone and sandstone)				Test No. Surface Level:	BH405 18.7	m AHD
Details of We Effective dian borehole dian Effective Leng	ell Installation neter (2re) neter (2R) gth of well so	on creen (Le)	50 100 12.00	mm mm m		Depth to water before test Depth to water at start of test Depth of top of gravel pack Depth of base of gravel pack	1.32 1.96 1.10 14.10	m m m m
Test Results Time (min)	Depth (m)	Change in Head dH (m)	d H/Ho	7				
0.00	1.96	0.64	1.070]				
0.02	1.95	0.63	1.042					
0.03	1.92	0.60	1.008					
0.12	1.88	0.56	0.926					
0.20	1.88	0.56	0.935		1.00			
0.25	1.86	0.54	0.895			A A A A A A A A A A A A A A A A A A A		
0.33	1.85	0.53	0.889					
0.43	1.84	0.52	0.861					
0.55	1.83	0.51	0.846					
0.68	1.76	0.44	0.736		ol/ho			
0.83	1.74	0.42	0.696		dh o			
1.00	1.71	0.39	0.653		Rativ			
1.18	1.66	0.34	0.569		ad I			
1.38	1.63	0.31	0.524		Не		*	
1.58	1.60	0.28	0.461	_				
1.83	1.5/	0.25	0.415	-				×
2.08	1.54	0.22	0.373					
2.35	1.52	0.20	0.331	_				
2.03	1.50	0.18	0.292	-	0 10			
2.93	1.47	0.15	0.253	-	0.10	0 1 2	3	4
3.25	1.44	0.12	0.206	-			,	
3.38 2.02	1.42	0.10	0.174	-		Time (minutes)	
3.93	1.41	0.09	0.144					
4.30	1.39	0.07	0.117	_				

To =	2.10	mins
	126	secs

Theory:

Rising Head Permeability calculated using equation by Hvorslev $k = [r^2 \ln(Le/R)]/2Le To$

where r = radius of casing

R = radius of well screen

Le = length of well screen

Hydraulic Conductivity	k =	1.1E-06	m/sec
-	=	9.8E-02	m/day

Permeability Testing - Falling Head Test Report

Client: Project: Location:	lient:The Grand Liverpool Pty Ltdroject:Proposed Hotel and Apartmentsocation:402 Macquarie Street, Liverpool		s bl	Project No:228571.00Test date:19-Jun-24Tested by:RT	
Test LocationDescription:Standpipe in boreholeMaterial type:Bringelly Shale (siltstone)		Standpipe in borehole Bringelly Shale (siltstone and sandstone)		dstone)	Test No.BH405Surface Level:18.7m AHD
Details of W Effective diar borehole diar Effective Len	ell Installatio neter (2re) neter (2R) gth of well so	on creen (Le)	50 100 12.00	mm mm m	Depth to water before test1.39mDepth to water at start of test0.75mDepth of top of gravel pack1.10mDepth of base of gravel pack14.10m
Test Results Time (min)	Depth (m)	Change in Head dH (m)	d H/Ho]	
0.00	0.75	0.64	1.000		
0.03	0.75	0.64	0.987		
0.07	0.77	0.62	0.967		
0.13	0.78	0.61	0.939		
0.18	0.80	0.59	0.918	1	
0.25	0.82	0.57	0.892		
0.33	0.84	0.55	0.859		
0.43	0.86	0.53	0.821		
0.55	0.89	0.50	0.779		
0.68	0.92	0.47	0.733		
0.83	0.95	0.44	0.684	od	
1.00	0.98	0.41	0.633	Rati	
1.18	1.01	0.38	0.582	ad F	
1.38	1.05	0.34	0.530	He	
1.60	1.08	0.31	0.483		
1.83	1.11	0.28	0.437		
2.08	1.13	0.26	0.397		
2.35	1.16	0.23	0.361		
2.63	1.18	0.21	0.329		
2.93	1.20	0.19	0.300	0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
3.25	1.21	0.18	0.275		· · · · · · · · ·
3.58	1.23	0.16	0.253		Time (minutes)
3.93	1.24	0.15	0.234		

To = 2.30 mins

138 secs

Theory:

Falling Head Permeability calculated using equation by Hvorslev $k = [r^2 \ln(Le/R)]/2Le To$

2.157

2.157

2.157

2.157

1.39

1.39

1.39

1.39

where r = radius of casing

R = radius of well screen

Le = length of well screen

Hydraulic Conductivity	k =	1.0E-06	m/sec
	=	8.9E-02	m/day

Appendix E

DIPS Analysis

Acoustic Televiewer Reports

Douglas Partners- Liverpool 402 Macquarie Street

Borehole - BH301

ATV Interpreted Features Report

Groundsearch Australia Pty. Limited Issued: 17 May 2024

www.groundsearch.com.au

DISCLAIMER

The data used in this report were obtained using equipment manufactured by LIM Logging/Electromind. The interpretations given in this report are based on judgement and experience of Groundsearch Australia's personnel. They are provided for Douglas Partner's sole use in accordance with a specified brief. As such, the interpretation outcomes do not necessarily address all aspects of ground conditions and behaviour on the subject site. The responsibility of Groundsearch Australia is solely to Douglas Partners and it is not intended that any third party rely upon this report. This report shall not be reproduced either wholly or in part without the written permission of Groundsearch Australia Pty. Limited.

For and on behalf of Groundsearch Australia Pty. Limited

Alea

John Lea BSc (Hons) FAusIMM Principal Geologist Managing Director

Executive summary

The data contained in this report were obtained from one vertical borehole that was drilled as a component of the 2024 site investigation programme for Douglas Partners- Liverpool.

LIM Logging BHTV acoustic televiewer logging tool was run to collect data in the field on 10 May 2024. The data in this report are from 3.30 to 27.84 mbgl.

The 208 identified features are interpreted as bedding planes and fractures. The bedding to fracture ratio is 12:1.

The LIM Logging Display program has automatically recalculated the dip angle data to represent the borehole in the vertical position and the dip direction data are referenced to **Magnetic North** with density contours as pole vectors in the **lower hemisphere**.

Contents	Page
Disclaimer	2
Executive Summary	3
1.0 Background technical information2.0 Interpretation methodology3.0 BH301 interpretations4.0 BH301 borehole deviation data	5 6 8 15 - 18

List of Figures

Page

Figure 1 BH301 interpreted features density contours	10
Figure 2 BH301 bedding orientation plan	11
Figure 3 BH301 fractures orientation plan	12
Figure 4 BH301 filled joint - CT 1mm to <10mm fractures density contour plan	13
Figure 5 BH301 filled joint - FD > 10mm fractures density contour plan	14
• • • • • •	

List of Tables	Page
Table 1 BH301 fracture percentages Table 2 BH301 borehole deviation data	8 15 - 18
Appendix 1 Tabulated interpreted features report for BH301	19 - 23

Appendix 2 1:10 Interpretation logs – 3.30 to 27.84 mbgl

1.0 Background technical information

The data contained in this report were obtained from one vertical borehole that was drilled as a component of the 2024 site investigation programme for Douglas Partners- Liverpool.

LIM Logging BHTV acoustic televiewer logging tool was run to collect data in the field on 10 May 2024. The data in this report are from 3.30 to 27.84 mbgl.

The 208 identified features are interpreted as bedding planes and fractures. The bedding to fracture ratio is 12:1.

The LIM Logging Display program has automatically recalculated the dip angle data to represent the borehole in the vertical position and the dip direction data are referenced to **Magnetic North** with density contours as pole vectors in the **lower hemisphere**.

The ATV takes an oriented image of the borehole using high-resolution sound waves. The acoustic image is displayed as amplitude variations. This information is used to detect bedding planes, fractures, and other borehole anomalies without the need to have clear fluid filling the boreholes. The tool works only in fluid-filled boreholes.

The televiewer digitises 180 measurements around the borehole at each high-resolution sample interval. These data can be oriented to Magnetic North and displayed in real-time while logging using the LIM BHTV Logging System.

Analysis software includes colour adjustment, fracture dip and dip direction determination, and classification of features. It allows information to be displayed on the graphical screen, plot, and in report format.

2.0 Interpretation methodology

It should be noted that the ATV is a bowspring-type, centralised tool and is affected by poor wallrock conditions known as rugosity and by mudcake adhered to the borehole wall.

The ATV data interpretation procedure is based on the superposition of curves on feature logs directly onto the computer screen by using a subjective, manual, two-point definition of a feature's top and base to produce a sine curve. Both sides of the amplitude plots represent magnetic north and magnetic south is in the centre of each plot. The low side, or trough, of the sine curve defines the dip direction of the feature.

The logging program automatically records the televiewer tool inclination angle and azimuth bearing and corrects for any borehole deviations. The curves are automatically given an identification number for subsequent referencing in a report file.

There are possibly more bedding planes and structural fractures appearing in the televiewer logs that have not been included in this report due to their poor graphic definition or the inability to resolve their geometry by superposing a sine curve using the program's two point method.

This report contains Magnetic North-referenced:

- Text summary of the interpreted features
- Logs that show geological features with their subjective interpretation curves shown at 1:10 scale. The logs are in standard format whereby the sonic image of the borehole wall is "flattened" onto the plot. The logs have the following additional features to enhance geological interpretations of the strata:
 - Natural gamma
 - ATV image referenced to Magnetic North
 - Colour-coded tadpoles that represent feature dip and dip direction
 - 3D ATV image with feature planes
 - Bedding polar plot referenced to Magnetic North
 - Fracture polar plot referenced to Magnetic North
 - Fracture frequency/M
 - Defect RQD
- Table containing feature curve ID, midpoint mbgl, dip angle, dip azimuth and feature description.
- Feature density contour plots as pole vectors in the lower hemisphere

The Rock Quality Designation (RQD) is a measure of the degree of jointing of fractures in a rock mass with:

- Image sample interval = 0.1 m
- Image length reported = 1.0 m

RQD values are:

- <0.25 very poor
- 0.25 0.50 poor
- 0.50 0.75 fair
- 0.75 0.90 good
- 0.90 1.00 excellent

3.0 BH301 interpretations

The 208 identified features are interpreted as bedding planes and fractures. The bedding to fracture ratio is 12:1.

The density contours for all interpreted features are shown in Figure 1. A description of each interpreted feature is presented in Appendix 1 and the combination log is presented in Appendix 2.

The 192 sedimentary features identified are bedding planes that appear to range in dip from flat-lying to 18⁰.

The 16 fractures identified are classified as:

Table 1

Interval section	Complete data 3.30 – 27.84 mbgl		
Feature classification	Feature count	Percentage	Dip range
Filled joint - CT 1mm to <10mm	07	44%	20° to 75°
Filled joint - FD >10mm	09	56%	11º to 50º

The sedimentary features identified are classified as:

Interval section	Complete data 3.30 – 27.84 mbgl		
Feature classification	Feature count	Dip range	
Bedding	192	00° to 18°	

Figures 1 to 5 present the orientation density contour plans for each feature set identified as pole vectors, MN, lower hemisphere.

Feature Dip is represented as 00^o being the horizontal plane and 90^o being the vertical plane.

Stereonets show the Feature Dip represented as 00^o being the centre of the stereonet and 90^o being the outer circle of the stereonet.

The standards used for reporting are outlined on the following page of this report.
	Code	Tadpole	Sine Wave	
2	Seam/zone base FZ			Fractured zone base
3	Seam/zone base	A		
4	Fracture plane - open	•		Fracture plane - open
5	Minor open fracture			Minor open fracture
6	Fracture plane - partially open	•		Fracture plane - partially open
7	Filled fracture	ø		Filled fracture
8	Bedding plane open	*		Bedding plane open
9	Fracture plane - closed	 Image: A set of the		Fracture plane - closed
10	Top of data	Ø		Top of data
11	Induced fracture	<		Induced fracture
12	SWL	\sim		SWL
13	Fault - FT			Level 1
14	Rocktype boundary	ø		Rocktype boundary
15	Bedding separation plane	•		Bedding separation plane
16	Fracture plane - discontinuous	•		Fracture plane - discontinuous
17	Partially filled fracture	o C		Partially filled fracture
18	Irregular vein	<u>ہ</u>		Irregular vein
19	Unconformity	ø .		Unconformity
20	Base of casing	ø		Base of casing
21	Top of Coal Unit	ø .		Top of Coal Unit
22	Base of Coal Unit	ø		Base of Coal Unit
23	Base of weathering			Base of weathering
24	Top of breakout	<u>ہ</u>		Top of breakout
25	Base of breakout	<u>ہ</u>		Base of breakout
26	Top of washout	<u>ح</u>		Top of washout
27	Base of washout	ď		Base of washout
28	Top of open fracture			Top of open fracture
29	Base of open fracture			Base of open fracture
30	Bedding plane partially open	ø,		Bedding plane partially open
31	Parting			Parting
32	Shear plane	<u>ہ</u>		Shear plane
33	Face cleat	•		Face cleat
34	Butt cleat	•		Butt cleat
35	Intrusive contact	*		Intrusive contact
36	Irregular fracture	*		Irregular fracture
37	Open joint >5 mm aperture	• ,		Level 2
38	Closed joint <5 mm aperture	•		Level 3
39	Vein	<u>بر</u> ک		Level 3
40	Filled joint - SN	<u>ہ</u>		Level 3
41	Filled joint - VN <1 mm	•		Level 3
42	Filled joint - CT 1 mm to <10 mm	• <u>•</u>		Level 3
43	Filled joint - FD > 10 mm	•		Level 3
44	Lithozone boundary	X		Lithozone boundary
45	Bedding plane	•		
46	Top of mineralisation	✓		
47	Base of mineralisation	 		
48	Crossbedding			

Figure 3 BH301 fractures orientation density contour plan – pole vectors, MN, lower hemisphere

Figure 4 BH301 filled joint – CT 1mm to <10mm density contour plan - pole vectors, MN, lower hemisphere

Figure 5 BH301 filled joint – FD >10mm density contour plan - pole vectors, MN, lower hemisphere

4.0 BH301 borehole deviation data

Depth	INCL	AZ	Easting	Northing	TVD
m	DEGREE	DEGREE	[m]	[m]	[m]
0	0.66	83.01	0	0	0
1	0.68	71.39	0.011341	0.002265	0.999932
2	0.65	72.15	0.022646	0.006244	1.99986
3	0.41	70.21	0.031183	0.009043	2.99982
4	0.47	69.51	0.038247	0.011735	3.99979
5	0.5	68.36	0.046231	0.014795	4.99975
6	0.54	65.38	0.054585	0.018501	5.99971
7	0.54	66.44	0.063203	0.022319	6.99967
8	0.54	66.67	0.07182	0.026081	7.99962
9	0.59	67.11	0.080751	0.029962	8.99958
10	0.63	73.17	0.0909	0.033643	9.99952
11	0.58	69.93	0.101031	0.03669	10.9995
12	0.59	64.37	0.110342	0.040753	11.9994
13	0.63	61.88	0.119721	0.045517	12.9994
14	0.64	58.12	0.129317	0.051079	13.9993
15	0.63	57.11	0.13856	0.057048	14.9992
16	0.61	57.07	0.147637	0.062668	15.9992
17	0.62	51.99	0.156266	0.06899	16.9991
18	0.63	52.33	0.164896	0.075643	17.9991
19	0.62	50.65	0.173471	0.082433	18.999
20	0.61	49.08	0.181629	0.089447	19.9989
21	0.61	49.62	0.18978	0.096319	20.9989
22	0.61	48.26	0.197805	0.103312	21.9988
23	0.62	46.72	0.20579	0.110601	22.9988
24	0.61	47.01	0.213608	0.117954	23.9987
25	0.59	46.95	0.221273	0.125173	24.9987
26	0.59	47.04	0.228757	0.132155	25.9986

The data are presented in Table 2 below.

BH301 Bullseye Plot

BH301 Cylindrical Plot

Appendix 1

Tabulated interpreted features report for BH301

Feature	Midpoint	Dip	Azimuth	Interpreted feature	
ID	mbgl	deg.	deg. MN	description	
1	3.30			Top of data	
2	3.33	4	170	Bedding plane	
3	3.34	3	134	Bedding plane	
4	3.35	2	174	Bedding plane	
5	3.37	1	217	Bedding plane	
6	3.49	2	72	Bedding plane	
7	3.50	2	76	Bedding plane	
8	3.51	2	66	Bedding plane	
9	3.53	7	109	Bedding plane	
10	3.62	7	52	Bedding plane	
11	3.68	8	249	Bedding plane	
12	3.69	4	242	Bedding plane	
13	3.72	18	18	Bedding plane	
14	3.74	5	286	Bedding plane	
15	3.76	7	163	Bedding plane	
16	3.79	9	303	Bedding plane	
17	3.82	7	212	Bedding plane	
18	3.83	7	213	Bedding plane	
19	3.95	14	29	Bedding plane	
20	3.99	13	5	Bedding plane	
21	4.07	6	26	Bedding plane	
22	4.08	5	26	Bedding plane	
23	4.10	7	22	Bedding plane	
24	4.26	41	210	Filled joint - CT 1 mm to <10 mm	
25	4.47	1	64	Bedding plane	
26	4.48	2	54	Bedding plane	
27	4.58	3	123	Bedding plane	
28	4.59	6	121	Bedding plane	
29	4.62	9	56	Bedding plane	
30	4.65	5	76	Bedding plane	
31	4.72	60	160	Filled joint - CT 1 mm to <10 mm	
32	5.09	8	102	Bedding plane	
33	5.22	3	330	Bedding plane	
34	5.23	3	310	Bedding plane	
35	5.38	3	307	Bedding plane	

36	5.42	3	313	Bedding plane
37	5.45	5	315	Bedding plane
38	5.50	1	280	Bedding plane
39	5.52	3	273	Bedding plane
40	5.56	1	276	Bedding plane
41	5.57	2	250	Bedding plane
42	5.70	3	131	Bedding plane
43	5.76	3	105	Bedding plane
44	5.78	3	107	Bedding plane
45	5.81	2	60	Bedding plane
46	5.85	3	64	Bedding plane
47	5.89	2	131	Bedding plane
48	5.89	2	122	Bedding plane
49	5.91	3	179	Bedding plane
50	5.97	1	68	Bedding plane
51	5.98	5	67	Bedding plane
52	6.00	6	87	Bedding plane
53	6.01	4	91	Bedding plane
54	6.03	3	102	Bedding plane
55	6.04	4	96	Bedding plane
56	6.24	28	172	Filled joint - CT 1 mm to <10 mm
57	6.26	64	136	Filled joint - CT 1 mm to <10 mm
58	6.29	20	172	Filled joint - CT 1 mm to <10 mm
59	6.35	11	45	Bedding plane
60	6.36	14	39	Bedding plane
61	6.38	7	66	Bedding plane
62	6.42	9	108	Bedding plane
63	6.44	7	108	Bedding plane
64	6.46	4	101	Bedding plane
65	6.50	4	106	Bedding plane
66	6.92	5	252	Bedding plane
67	6.93	4	238	Bedding plane
68	6.94	8	254	Bedding plane
69	6.95	6	266	Bedding plane
70	7.11	3	322	Bedding plane
71	7.15	13	166	Bedding plane
72	7.37	8	249	Bedding plane
73	7.63	2	336	Bedding plane
74	7.64	3	336	Bedding plane
75	7.75	3	318	Bedding plane
76	7.76	3	305	Bedding plane
77	7.95	2	305	Bedding plane
78	7.96	1	30	Bedding plane
79	8.05	5	27	Bedding plane
80	8.46	7	127	Bedding plane
				÷ ·

81	8.51	5	255	Bedding plane
82	8.67	8	343	Bedding plane
83	8.67	6	343	Bedding plane
84	8.93	3	40	Bedding plane
85	8.94	1	48	Bedding plane
86	9.02	6	66	Bedding plane
87	9.03	3	70	Bedding plane
88	9.08	13	35	Bedding plane
89	9.13	13	33	Bedding plane
90	9.92	0	248	Bedding plane
91	9.93	2	73	Bedding plane
92	9.99	3	210	Bedding plane
93	10.00	4	195	Bedding plane
94	10.16	12	113	Bedding plane
95	10.21	29	165	Filled joint - FD > 10 mm
96	10.24	36	19	Filled joint - FD > 10 mm
97	10.42	50	142	Filled joint - FD > 10 mm
98	10.68	4	223	Bedding plane
99	10.68	4	202	Bedding plane
100	10.79	15	307	Filled joint - FD > 10 mm
101	10.81	21	97	Filled joint - FD > 10 mm
102	11.16	1	296	Bedding plane
103	11.17	2	89	Bedding plane
104	11.65	1	223	Bedding plane
105	13.36	3	210	Bedding plane
106	13.37	4	147	Bedding plane
107	13.42	5	122	Bedding plane
108	13.42	6	145	Bedding plane
109	13.43	7	138	Bedding plane
110	13.47	6	347	Bedding plane
111	13.75	6	174	Bedding plane
112	13.76	6	165	Bedding plane
113	14.06	4	244	Bedding plane
114	14.06	3	219	Bedding plane
115	14.07	5	208	Bedding plane
116	14.15	4	318	Bedding plane
117	14.16	4	327	Bedding plane
118	14.20	4	74	Bedding plane
119	14.27	6	320	Bedding plane
120	14.40	5	173	Bedding plane
121	14.43	2	242	Bedding plane
122	14.47	3	258	Bedding plane
123	14.58	2	251	Bedding plane
124	14.61	2	205	Bedding plane
125	14.62	2	213	Bedding plane

126	14.68	2	270	Bedding plane
127	14.81	5	328	Bedding plane
128	14.81	5	310	Bedding plane
129	14.82	2	301	Bedding plane
130	14.83	3	305	Bedding plane
131	14.84	2	285	Bedding plane
132	15.04	4	154	Bedding plane
133	15.06	2	154	Bedding plane
134	15.20	4	21	Bedding plane
135	15.21	4	37	Bedding plane
136	15.21	4	24	Bedding plane
137	15.22	5	39	Bedding plane
138	15.27	4	50	Bedding plane
139	15.46	1	318	Bedding plane
140	15.47	2	307	Bedding plane
141	15.48	2	271	Bedding plane
142	15.51	11	19	Filled joint - FD > 10 mm
143	15.51	8	308	Bedding plane
144	15.57	1	328	Bedding plane
145	15.57	3	343	Bedding plane
146	15.65	6	143	Bedding plane
147	15.76	6	303	Bedding plane
148	15.78	27	277	Filled joint - FD > 10 mm
149	16.01	41	57	Filled joint - FD > 10 mm
150	16.06	3	268	Bedding plane
151	16.17	13	336	Bedding plane
152	16.23	14	325	Bedding plane
153	16.25	18	321	Bedding plane
154	16.30	48	36	Filled joint - FD > 10 mm
155	16.47	15	305	Bedding plane
156	16.48	12	324	Bedding plane
157	16.50	12	37	Bedding plane
158	16.59	6	278	Bedding plane
159	16.66	8	269	Bedding plane
160	16.70	2	195	Bedding plane
161	16.92	3	246	Bedding plane
162	16.94	4	217	Bedding plane
163	17.17	2	261	Bedding plane
164	17.20	5	309	Bedding plane
165	17.23	2	339	Bedding plane
166	17.24	3	309	Bedding plane
167	17.50	1	294	Bedding plane
168	17.53	2	286	Bedding plane
169	17.57	4	293	Bedding plane
170	17.64	3	321	Bedding plane

171	17.66	3	299	Bedding plane
172	17.82	1	280	Bedding plane
173	17.98	3	305	Bedding plane
174	17.99	1	294	Bedding plane
175	18.01	1	321	Bedding plane
176	18.18	4	210	Bedding plane
177	18.72	5	246	Bedding plane
178	18.85	3	245	Bedding plane
179	18.86	3	257	Bedding plane
180	19.04	2	264	Bedding plane
181	19.05	3	280	Bedding plane
182	19.07	1	245	Bedding plane
183	20.52	1	234	Bedding plane
184	20.52	2	230	Bedding plane
185	20.66	11	264	Bedding plane
186	20.67	9	268	Bedding plane
187	20.69	6	257	Bedding plane
188	20.70	3	249	Bedding plane
189	20.83	3	270	Bedding plane
190	20.90	6	284	Bedding plane
191	20.91	5	281	Bedding plane
192	21.16	2	302	Bedding plane
193	21.18	6	308	Bedding plane
194	21.64	3	303	Bedding plane
195	21.65	3	298	Bedding plane
196	21.74	3	283	Bedding plane
197	21.91	74	259	Filled joint - CT 1 mm to <10 mm
198	22.08	4	244	Bedding plane
199	22.10	3	227	Bedding plane
200	22.82	4	228	Bedding plane
201	22.83	4	220	Bedding plane
202	23.26	75	252	Filled joint - CT 1 mm to <10 mm
203	23.52	1	277	Bedding plane
204	23.54	2	278	Bedding plane
205	23.55	3	301	Bedding plane
206	23.56	1	281	Bedding plane
207	23.58	4	199	Bedding plane
208	24.69	3	328	Bedding plane
209	24.70	3	51	Bedding plane
210	27.84			Base of data
Feature	Midpoint	Dip	Azimuth	Interpreted feature
ID	mbgl	deg.	deg. MN	description

Appendix 2

1:10 Interpretation logs

3.30 To 27.84 mbgl

				• 26.80 •	•				+	H
				• 26.85 •					4	4
			strenk i min	1 26.90						4
			and a second second second second second second second second second second second second second second second							
				• 26.95 ▶	1				T	T
	taning 2000 Book Einen			+ 27.00 ▪	•				+	Η
	- Mi interation de la compañía de la compañía de la compañía de la compañía de la compañía de la compañía de la		in Erzemili	• 27.05 •				++	+	H
				27.10					4	4
				27 15						
				27.13						
			A CONTRACTOR	27.20					T	t
				• 27.25 •					+	Η
			1. 1. 1. 1. 1.	+ 27.30 Þ				+++	4	4
			All and the	27.35				\square		4
			11 1 1 1 A	. 27.40						
				- 27.40						
				+ 27.45 •					T	Ħ
			S. States	• 27.50 •					+	Η
				• 27.55 I				\blacksquare	4	4
				27.60						4
	ALL AND THE PARTY		Too to							
				- 27.65	1				T	T
			12-1	• 27.70 •					+	t
	1 - 1 - 1 - 1 - S		100 200	• 27.75 •					+	+
			Ren I a	+ 27.80 •					4	4
									7 6	
0 API 300	0° 90° 180° 270° 0'	0 90	180*		Will Pirt - H- GSAlberry	Wilf Pict - I H. GSAslinew	Ö1	'oor 'ery po	air	vcelle
	0 45000			1 m.10 m				9		f
——										
GAM(NAT)	ATV IMAGE MN	FEATURE DIP & AZ MN	3D ATV + INTERP PLANES	Depth	BEDDING POLAR PLOT MN	FRACTURE POLAR PLOT MN	FRACT/M	RQ	D	
		1					1	1		

Douglas Partners- Liverpool 402 Macquarie Street

Borehole - BH302

ATV Interpreted Features Report

Groundsearch Australia Pty. Limited Issued: 16 May 2024

www.groundsearch.com.au

DISCLAIMER

The data used in this report were obtained using equipment manufactured by LIM Logging/Electromind. The interpretations given in this report are based on judgement and experience of Groundsearch Australia's personnel. They are provided for Douglas Partner's sole use in accordance with a specified brief. As such, the interpretation outcomes do not necessarily address all aspects of ground conditions and behaviour on the subject site. The responsibility of Groundsearch Australia is solely to Douglas Partners and it is not intended that any third party rely upon this report. This report shall not be reproduced either wholly or in part without the written permission of Groundsearch Australia Pty. Limited.

For and on behalf of Groundsearch Australia Pty. Limited

Alea

John Lea BSc (Hons) FAusIMM Principal Geologist Managing Director

Executive summary

The data contained in this report were obtained from one vertical borehole that was drilled as a component of the 2024 site investigation programme for Douglas Partners- Liverpool.

LIM Logging BHTV acoustic televiewer logging tool was run to collect data in the field on 10 May 2024. The data in this report are from 3.48 to 24.35 mbgl.

The 160 identified features are interpreted as bedding planes and fractures. The bedding to fracture ratio is 4.93:1.

The LIM Logging Display program has automatically recalculated the dip angle data to represent the borehole in the vertical position and the dip direction data are referenced to **Magnetic North** with density contours as pole vectors in the **lower hemisphere**.

Contents	Page
Disclaimer	2
Executive Summary	3
1.0 Background technical information2.0 Interpretation methodology3.0 BH302 interpretations4.0 BH302 borehole deviation data	5 6 8 15 - 18

List of Figures

Page

Figure 1 BH302 interpreted features density contours	10
Figure 2 BH302 bedding orientation plan	11
Figure 3 BH302 fractures orientation plan	12
Figure 4 BH302 filled joint - CT 1mm to <10mm fractures density contour plan	13
Figure 5 BH302 filled joint - FD > 10mm fractures density contour plan	14

List of Tables	Page
Table 1 BH302 fracture percentages Table 2 BH302 borehole deviation data	8 15 - 18
Appendix 1 Tabulated interpreted features report for BH302	19 - 22

Appendix 2 1:10 Interpretation logs – 3.48 to 24.35 mbgl

1.0 Background technical information

The data contained in this report were obtained from one vertical borehole that was drilled as a component of the 2024 site investigation programme for Douglas Partners- Liverpool.

LIM Logging BHTV acoustic televiewer logging tool was run to collect data in the field on 10 May 2024. The data in this report are from 3.48 to 24.35 mbgl.

The 160 identified features are interpreted as bedding planes and fractures. The bedding to fracture ratio is 4.93:1.

The LIM Logging Display program has automatically recalculated the dip angle data to represent the borehole in the vertical position and the dip direction data are referenced to **Magnetic North** with density contours as pole vectors in the **lower hemisphere**.

The ATV takes an oriented image of the borehole using high-resolution sound waves. The acoustic image is displayed as amplitude variations. This information is used to detect bedding planes, fractures, and other borehole anomalies without the need to have clear fluid filling the boreholes. The tool works only in fluid-filled boreholes.

The televiewer digitises 180 measurements around the borehole at each high-resolution sample interval. These data can be oriented to Magnetic North and displayed in real-time while logging using the LIM BHTV Logging System.

Analysis software includes colour adjustment, fracture dip and dip direction determination, and classification of features. It allows information to be displayed on the graphical screen, plot, and in report format.

2.0 Interpretation methodology

It should be noted that the ATV is a bowspring-type, centralised tool and is affected by poor wallrock conditions known as rugosity and by mudcake adhered to the borehole wall.

The ATV data interpretation procedure is based on the superposition of curves on feature logs directly onto the computer screen by using a subjective, manual, two-point definition of a feature's top and base to produce a sine curve. Both sides of the amplitude plots represent magnetic north and magnetic south is in the centre of each plot. The low side, or trough, of the sine curve defines the dip direction of the feature.

The logging program automatically records the televiewer tool inclination angle and azimuth bearing and corrects for any borehole deviations. The curves are automatically given an identification number for subsequent referencing in a report file.

There are possibly more bedding planes and structural fractures appearing in the televiewer logs that have not been included in this report due to their poor graphic definition or the inability to resolve their geometry by superposing a sine curve using the program's two point method.

This report contains Magnetic North-referenced:

- Text summary of the interpreted features
- Logs that show geological features with their subjective interpretation curves shown at 1:10 scale. The logs are in standard format whereby the sonic image of the borehole wall is "flattened" onto the plot. The logs have the following additional features to enhance geological interpretations of the strata:
 - Natural gamma
 - ATV image referenced to Magnetic North
 - Colour-coded tadpoles that represent feature dip and dip direction
 - 3D ATV image with feature planes
 - Bedding polar plot referenced to Magnetic North
 - Fracture polar plot referenced to Magnetic North
 - Fracture frequency/M
 - Defect RQD
- Table containing feature curve ID, midpoint mbgl, dip angle, dip azimuth and feature description.
- Feature density contour plots as pole vectors in the lower hemisphere

The Rock Quality Designation (RQD) is a measure of the degree of jointing of fractures in a rock mass with:

- Image sample interval = 0.1 m
- Image length reported = 1.0 m

RQD values are:

- <0.25 very poor
- 0.25 0.50 poor
- 0.50 0.75 fair
- 0.75 0.90 good
- 0.90 1.00 excellent

3.0 BH302 interpretations

The 160 identified features are interpreted as bedding planes and fractures. The bedding to fracture ratio is 4.93:1.

The density contours for all interpreted features are shown in Figure 1. A description of each interpreted feature is presented in Appendix 1 and the combination log is presented in Appendix 2.

The 133 sedimentary features identified are bedding planes that appear to range in dip from flat-lying to 23^o.

The 27 fractures identified are classified as:

Table 1

Interval section	Complete		
Feature classification	Feature count	Percentage	Dip range
Filled joint - CT 1mm to <10mm	14	52%	12 ⁰ to 77 ⁰
Filled joint - FD >10mm	13	48%	12º to 46º

The sedimentary features identified are classified as:

Interval section	Complete data 3.48 – 24.35 mbgl			
Feature classification	Feature count	Dip range		
Bedding	133	00° to 23°		

Figures 1 to 5 present the orientation density contour plans for each feature set identified as pole vectors, MN, lower hemisphere.

Feature Dip is represented as 00^o being the horizontal plane and 90^o being the vertical plane.

Stereonets show the Feature Dip represented as 00^o being the centre of the stereonet and 90^o being the outer circle of the stereonet.

The standards used for reporting are outlined on the following page of this report.

	Code	Tadpole	Sine Wave	
2	Seam/zone base FZ			Fractured zone base
3	Seam/zone base	A		
4	Fracture plane - open	•		Fracture plane - open
5	Minor open fracture			Minor open fracture
6	Fracture plane - partially open	 Image: A set of the		Fracture plane - partially open
7	Filled fracture	ø		Filled fracture
8	Bedding plane open	*		Bedding plane open
9	Fracture plane - closed	 Image: A set of the		Fracture plane - closed
10	Top of data	Ø		Top of data
11	Induced fracture	<		Induced fracture
12	SWL	\sim		SWL
13	Fault - FT			Level 1
14	Rocktype boundary	ø		Rocktype boundary
15	Bedding separation plane	•		Bedding separation plane
16	Fracture plane - discontinuous	•		Fracture plane - discontinuous
17	Partially filled fracture	o C		Partially filled fracture
18	Irregular vein	<u>ہ</u>		Irregular vein
19	Unconformity	ø .		Unconformity
20	Base of casing	ø		Base of casing
21	Top of Coal Unit	ø		Top of Coal Unit
22	Base of Coal Unit	ø		Base of Coal Unit
23	Base of weathering			Base of weathering
24	Top of breakout	<u>ہ</u>		Top of breakout
25	Base of breakout	<u>ہ</u>		Base of breakout
26	Top of washout	<u>ح</u>		Top of washout
27	Base of washout	Ó		Base of washout
28	Top of open fracture			Top of open fracture
29	Base of open fracture			Base of open fracture
30	Bedding plane partially open	ø,		Bedding plane partially open
31	Parting			Parting
32	Shear plane	<u>ه</u>		Shear plane
33	Face cleat	•		Face cleat
34	Butt cleat	•		Butt cleat
35	Intrusive contact	*		Intrusive contact
36	Irregular fracture	*		Irregular fracture
37	Open joint >5 mm aperture	• ,		Level 2
38	Closed joint <5 mm aperture	•		Level 3
39	Vein	<u>بر</u> ک		Level 3
40	Filled joint - SN	<u>ب</u>		Level 3
41	Filled joint - VN <1 mm			Level 3
42	Filled joint - CT 1 mm to <10 mm	• <u>•</u>		Level 3
43	Filled joint - FD > 10 mm			Level 3
44	Lithozone boundary	X		Lithozone boundary
45	Bedding plane	• ,		
46	l op of mineralisation	• ,		
47	Base of mineralisation	● ,		
48	Crossbedding			

Figure 3 BH302 fractures orientation density contour plan – pole vectors, MN, lower hemisphere

Figure 4 BH302 filled joint – CT 1mm to <10mm density contour plan - pole vectors, MN, lower hemisphere

Figure 5 BH302 filled joint – FD >10mm density contour plan - pole vectors, MN, lower hemisphere

4.0 BH302 borehole deviation data

Depth	INCL	AZ	Easting	Northing	TVD
m	DEGREE	DEGREE	[m]	[m]	[m]
0	0.11	124.15	0	0	0
1	0.17	106.75	0.001987	-0.00074	0.999998
2	0.28	110.64	0.00584	-0.00202	1.99999
3	0.34	132.18	0.010577	-0.00441	2.99997
4	0.24	177.29	0.013417	-0.00918	3.99996
5	0.25	172.13	0.01388	-0.0136	4.99995
6	0.24	175.07	0.014397	-0.01792	5.99994
7	0.27	172.88	0.014795	-0.02229	6.99993
8	0.26	174.45	0.015425	-0.02696	7.99992
9	0.23	176.19	0.015719	-0.03119	8.99991
10	0.23	174.93	0.01598	-0.03511	9.9999
11	0.22	179.25	0.016215	-0.0391	10.9999
12	0.23	179.98	0.016293	-0.04295	11.9999
13	0.23	188.59	0.015994	-0.04694	12.9999
14	0.22	189.45	0.015378	-0.05084	13.9999
15	0.23	192.39	0.014649	-0.05478	14.9999
16	0.21	199.77	0.013668	-0.05843	15.9999
17	0.24	204.32	0.012092	-0.06209	16.9998
18	0.25	205.43	0.010373	-0.06593	17.9998
19	0.27	206.88	0.00836	-0.06991	18.9998
20	0.3	200.83	0.0063	-0.07435	19.9998
21	0.31	199.04	0.004527	-0.07939	20.9998
22	0.31	203.19	0.002533	-0.08449	21.9998
23	0.31	205.2	0.000263	-0.08923	22.9998

The data are presented in Table 2 below.

BH302 Bullseye Plot

BH302 Cubic Plot

Appendix 1

Feature	Midpoint	Dip	Azimuth	Interpreted feature
ID	mbgl	deg.	deg. MN	description
1	3.48			Top of data
2	3.75	3	259	Bedding plane
3	3.76	12	249	Filled joint - FD > 10 mm
4	3.78	28	300	Filled joint - FD > 10 mm
5	3.80	33	306	Filled joint - FD > 10 mm
6	3.83	29	306	Filled joint - FD > 10 mm
7	3.85	36	267	Filled joint - FD > 10 mm
8	3.91	9	32	Bedding plane
9	4.03	5	103	Bedding plane
10	4.07	16	84	Bedding plane
11	4.08	16	97	Bedding plane
12	4.11	19	94	Bedding plane
13	4.13	16	99	Bedding plane
14	4.16	5	154	Bedding plane
15	4.20	29	30	Filled joint - FD > 10 mm
16	4.23	17	26	Filled joint - FD > 10 mm
17	4.25	5	193	Bedding plane
18	4.40	5	190	Bedding plane
19	4.42	5	218	Bedding plane
20	4.46	27	298	Filled joint - CT 1 mm to <10 mm
21	4.49	5	200	Bedding plane
22	4.54	3	135	Bedding plane
23	4.63	12	242	Filled joint - CT 1 mm to <10 mm
24	4.68	19	99	Filled joint - FD > 10 mm
25	4.70	46	127	Filled joint - FD > 10 mm
26	4.75	14	312	Filled joint - CT 1 mm to <10 mm
27	4.77	36	280	Filled joint - CT 1 mm to <10 mm
28	4.79	32	287	Filled joint - FD > 10 mm
29	4.80	36	136	Filled joint - FD > 10 mm
30	4.88	5	1	Bedding plane
31	4.99	5	301	Bedding plane
32	5.05	5	297	Bedding plane
33	5.14	15	256	Bedding plane
34	5.18	9	59	Bedding plane
35	5.51	2	67	Bedding plane
36	5.52	3	56	Bedding plane
37	5.67	17	329	Filled joint - FD > 10 mm
38	5.70	7	128	Bedding plane
39	5.89	5	338	Bedding plane

Tabulated interpreted features report for BH302

40	6.18	3	249	Bedding plane
41	6.35	4	47	Bedding plane
42	6.36	3	50	Bedding plane
43	6.49	4	51	Bedding plane
44	6.51	2	58	Bedding plane
45	6.67	3	173	Bedding plane
46	6.84	0	324	Bedding plane
47	6.87	3	41	Bedding plane
48	6.90	10	21	Bedding plane
49	6.95	67	260	Filled joint - CT 1 mm to <10 mm
50	6.96	3	301	Bedding plane
51	7.02	2	316	Bedding plane
52	7.16	0	260	Bedding plane
53	7.18	61	324	Filled joint - CT 1 mm to <10 mm
54	7.24	3	309	Bedding plane
55	7.27	7	274	Bedding plane
56	7.29	12	272	Bedding plane
57	7.30	60	334	Filled joint - CT 1 mm to <10 mm
58	7.30	10	265	Bedding plane
59	7.35	12	225	Bedding plane
60	7.36	3	186	Bedding plane
61	7.43	7	239	Bedding plane
62	7.45	7	228	Bedding plane
63	7.95	11	227	Bedding plane
64	7.98	7	246	Bedding plane
65	8.06	2	342	Bedding plane
66	8.12	7	53	Bedding plane
67	8.32	13	207	Bedding plane
68	8.43	23	185	Bedding plane
69	8.48	13	166	Bedding plane
70	8.51	17	170	Bedding plane
71	8.53	3	76	Bedding plane
72	8.63	2	320	Bedding plane
73	8.73	2	333	Bedding plane
74	8.87	2	121	Bedding plane
75	8.90	3	105	Bedding plane
76	9.12	1	308	Bedding plane
77	9.60	2	345	Bedding plane
78	9.62	1	150	Bedding plane
79	9.80	3	306	Bedding plane
80	10.02	8	279	Bedding plane
81	10.03	3	304	Bedding plane
82	10.15	18	276	Bedding plane
83	10.20	13	225	Bedding plane
84	10.34	3	260	Bedding plane

85	10.79	3	286	Bedding plane
86	10.85	3	264	Bedding plane
87	11.02	11	276	Bedding plane
88	11.05	2	289	Bedding plane
89	11.16	6	93	Bedding plane
90	11.21	3	184	Bedding plane
91	11.29	6	184	Bedding plane
92	11.30	8	173	Bedding plane
93	11.33	4	222	Bedding plane
94	11.35	35	193	Filled joint - FD > 10 mm
95	11.35	4	15	Bedding plane
96	11.38	33	154	Filled joint - CT 1 mm to <10 mm
97	11.41	32	297	Filled joint - CT 1 mm to <10 mm
98	11.48	35	45	Filled joint - CT 1 mm to <10 mm
99	11.60	58	298	Filled joint - CT 1 mm to <10 mm
100	11.85	9	327	Bedding plane
101	11.86	6	316	Bedding plane
102	11.88	16	298	Bedding plane
103	11.89	14	305	Bedding plane
104	11.95	3	292	Bedding plane
105	11.97	5	109	Bedding plane
106	12.05	12	303	Bedding plane
107	12.21	3	14	Bedding plane
108	12.30	10	316	Bedding plane
109	12.49	6	333	Bedding plane
110	13.00	6	212	Bedding plane
111	13.12	5	239	Bedding plane
112	13.51	3	309	Bedding plane
113	14.92	5	312	Bedding plane
114	15.20	8	248	Bedding plane
115	15.27	3	219	Bedding plane
116	15.56	2	339	Bedding plane
117	15.59	5	320	Bedding plane
118	15.60	3	324	Bedding plane
119	15.64	9	329	Bedding plane
120	15.80	5	315	Bedding plane
121	15.83	4	280	Bedding plane
122	15.84	3	295	Bedding plane
123	15.86	6	74	Bedding plane
124	15.88	8	87	Bedding plane
125	15.89	8	73	Bedding plane
126	16.03	6	248	Bedding plane
127	16.09	10	239	Bedding plane
128	16.09	10	238	Bedding plane
129	16.23	4	242	Bedding plane

130	16.30	5	193	Bedding plane
131	16.38	5	90	Bedding plane
132	16.48	2	303	Bedding plane
133	16.75	4	308	Bedding plane
134	16.94	5	245	Bedding plane
135	17.07	3	283	Bedding plane
136	17.38	3	311	Bedding plane
137	17.42	3	338	Bedding plane
138	17.74	8	324	Bedding plane
139	17.92	2	253	Bedding plane
140	17.95	3	220	Bedding plane
141	18.15	5	290	Bedding plane
142	18.27	5	266	Bedding plane
143	18.42	4	272	Bedding plane
144	18.44	3	304	Bedding plane
145	18.51	7	230	Bedding plane
146	18.84	5	87	Bedding plane
147	18.94	3	67	Bedding plane
148	18.97	3	93	Bedding plane
149	19.63	4	166	Bedding plane
150	19.76	5	112	Bedding plane
151	19.79	2	105	Bedding plane
152	20.26	77	250	Filled joint - CT 1 mm to <10 mm
153	20.47	3	238	Bedding plane
154	20.53	2	207	Bedding plane
155	21.18	3	135	Bedding plane
156	21.26	68	338	Filled joint - CT 1 mm to <10 mm
157	21.66	1	111	Bedding plane
158	21.78	14	260	Bedding plane
159	21.80	15	257	Bedding plane
160	23.49	1	254	Bedding plane
161	23.82	50	306	Filled joint - CT 1 mm to <10 mm
162	24.35			Base of data
Feature	Midpoint	Dip	Azimuth	Interpreted feature
ID	mbgl	deg.	deg. MN	description

Appendix 2

1:10 Interpretation logs

3.48 To 24.35 mbgl

Page 2

Douglas Partners- Liverpool 402 Macquarie Street

Borehole - BH303

ATV Interpreted Features Report

Groundsearch Australia Pty. Limited Issued: 16 May 2024

www.groundsearch.com.au

DISCLAIMER

The data used in this report were obtained using equipment manufactured by LIM Logging/Electromind. The interpretations given in this report are based on judgement and experience of Groundsearch Australia's personnel. They are provided for Douglas Partner's sole use in accordance with a specified brief. As such, the interpretation outcomes do not necessarily address all aspects of ground conditions and behaviour on the subject site. The responsibility of Groundsearch Australia is solely to Douglas Partners and it is not intended that any third party rely upon this report. This report shall not be reproduced either wholly or in part without the written permission of Groundsearch Australia Pty. Limited.

For and on behalf of Groundsearch Australia Pty. Limited

Alea

John Lea BSc (Hons) FAusIMM Principal Geologist Managing Director

Executive summary

The data contained in this report were obtained from one vertical borehole that was drilled as a component of the 2024 site investigation programme for Douglas Partners- Liverpool.

LIM Logging BHTV acoustic televiewer logging tool was run to collect data in the field on 07 May 2024. The data in this report are from 2.81 to 23.65 mbgl.

The 356 identified features are interpreted as bedding planes and fractures. The bedding to fracture ratio is 16.8:1.

The LIM Logging Display program has automatically recalculated the dip angle data to represent the borehole in the vertical position and the dip direction data are referenced to **Magnetic North** with density contours as pole vectors in the **lower hemisphere**.

Contents	Page
Disclaimer	2
Executive Summary	3
1.0 Background technical information2.0 Interpretation methodology3.0 BH303 interpretations4.0 BH303 borehole deviation data	5 6 8 15 - 24

List of Figures

Page

Figure 1 BH303 interpreted features density contours	10
Figure 2 BH303 bedding orientation plan	11
Figure 3 BH303 fractures orientation plan	12
Figure 4 BH303 filled joint - CT 1mm to <10mm fractures density contour plan	13
Figure 5 BH303 filled joint - FD > 10mm fractures density contour plan	14

List of Tables	Page
Table 1 BH303 fracture percentages Table 2 BH303 borehole deviation data	8 15 - 24
Appendix 1 Tabulated interpreted features report for BH303	25 - 32

Appendix 2 1:10 Interpretation logs – 2.81 to 23.65 mbgl

1.0 Background technical information

The data contained in this report were obtained from one vertical borehole that was drilled as a component of the 2024 site investigation programme for Douglas Partners- Liverpool.

LIM Logging BHTV acoustic televiewer logging tool was run to collect data in the field on 07 May 2024. The data in this report are from 2.81 to 23.65 mbgl.

The 356 identified features are interpreted as bedding planes and fractures. The bedding to fracture ratio is 16.8:1.

The LIM Logging Display program has automatically recalculated the dip angle data to represent the borehole in the vertical position and the dip direction data are referenced to **Magnetic North** with density contours as pole vectors in the **lower hemisphere**.

The ATV takes an oriented image of the borehole using high-resolution sound waves. The acoustic image is displayed as amplitude variations. This information is used to detect bedding planes, fractures, and other borehole anomalies without the need to have clear fluid filling the boreholes. The tool works only in fluid-filled boreholes.

The televiewer digitises 180 measurements around the borehole at each high-resolution sample interval. These data can be oriented to Magnetic North and displayed in real-time while logging using the LIM BHTV Logging System.

Analysis software includes colour adjustment, fracture dip and dip direction determination, and classification of features. It allows information to be displayed on the graphical screen, plot, and in report format.

2.0 Interpretation methodology

It should be noted that the ATV is a bowspring-type, centralised tool and is affected by poor wallrock conditions known as rugosity and by mudcake adhered to the borehole wall.

The ATV data interpretation procedure is based on the superposition of curves on feature logs directly onto the computer screen by using a subjective, manual, two-point definition of a feature's top and base to produce a sine curve. Both sides of the amplitude plots represent magnetic north and magnetic south is in the centre of each plot. The low side, or trough, of the sine curve defines the dip direction of the feature.

The logging program automatically records the televiewer tool inclination angle and azimuth bearing and corrects for any borehole deviations. The curves are automatically given an identification number for subsequent referencing in a report file.

There are possibly more bedding planes and structural fractures appearing in the televiewer logs that have not been included in this report due to their poor graphic definition or the inability to resolve their geometry by superposing a sine curve using the program's two point method.

This report contains Magnetic North-referenced:

- Text summary of the interpreted features
- Logs that show geological features with their subjective interpretation curves shown at 1:10 scale. The logs are in standard format whereby the sonic image of the borehole wall is "flattened" onto the plot. The logs have the following additional features to enhance geological interpretations of the strata:
 - Natural gamma
 - ATV image referenced to Magnetic North
 - Colour-coded tadpoles that represent feature dip and dip direction
 - Feature aperture in mm
 - 3D ATV image with feature planes
 - Bedding polar plot referenced to Magnetic North
 - Fracture polar plot referenced to Magnetic North
 - Fracture frequency/M
 - Defect RQD
- Table containing feature curve ID, midpoint mbgl, dip angle, dip azimuth, feature description and feature aperature.
- Feature density contour plots as pole vectors in the lower hemisphere

The Rock Quality Designation (RQD) is a measure of the degree of jointing of fractures in a rock mass with:

- Image sample interval = 0.1 m
- Image length reported = 1.0 m

RQD values are:

- <0.25 very poor
- 0.25 0.50 poor
- 0.50 0.75 fair
- 0.75 0.90 good
- 0.90 1.00 excellent

3.0 BH303 interpretations

The 356 identified features are interpreted as bedding planes and fractures. The bedding to fracture ratio is 16.8:1.

The density contours for all interpreted features are shown in Figure 1. A description of each interpreted feature is presented in Appendix 1 and the combination log is presented in Appendix 2.

The 336 sedimentary features identified are bedding planes that appear to range in dip from flat-lying to 23^o.

The 20 fractures identified are classified as:

Table 1

Interval section	Complete		
Feature classification	Feature count Percentage		Dip range
Filled joint - CT 1mm to <10mm	15	75%	10 [°] to 82 [°]
Filled joint - FD >10mm	05	25%	20° to 25°

The sedimentary features identified are classified as:

Interval section	Complete data 2.81 – 23.65 mbgl		
Feature classification	Feature count	Dip range	
Bedding	336	00° to 23°	

Figures 1 to 5 present the orientation density contour plans for each feature set identified as pole vectors, MN, lower hemisphere.

Feature Dip is represented as 00^o being the horizontal plane and 90^o being the vertical plane.

Stereonets show the Feature Dip represented as 00^o being the centre of the stereonet and 90^o being the outer circle of the stereonet.

The standards used for reporting are outlined on the following page of this report.

	Code	Tadpole	Sine Wave	
2	Seam/zone base FZ			Fractured zone base
3	Seam/zone base	A		
4	Fracture plane - open	•		Fracture plane - open
5	Minor open fracture			Minor open fracture
6	Fracture plane - partially open	•		Fracture plane - partially open
7	Filled fracture	ø		Filled fracture
8	Bedding plane open	*		Bedding plane open
9	Fracture plane - closed	 Image: A set of the		Fracture plane - closed
10	Top of data	Ø		Top of data
11	Induced fracture	<		Induced fracture
12	SWL	\sim		SWL
13	Fault - FT			Level 1
14	Rocktype boundary	ø		Rocktype boundary
15	Bedding separation plane	•		Bedding separation plane
16	Fracture plane - discontinuous	•		Fracture plane - discontinuous
17	Partially filled fracture	o C		Partially filled fracture
18	Irregular vein	<u>ہ</u>		Irregular vein
19	Unconformity	ø .		Unconformity
20	Base of casing	ø		Base of casing
21	Top of Coal Unit	ø		Top of Coal Unit
22	Base of Coal Unit	ø		Base of Coal Unit
23	Base of weathering			Base of weathering
24	Top of breakout	<u>ہ</u>		Top of breakout
25	Base of breakout	<u>ہ</u>		Base of breakout
26	Top of washout	<u>ح</u>		Top of washout
27	Base of washout	Ó		Base of washout
28	Top of open fracture			Top of open fracture
29	Base of open fracture			Base of open fracture
30	Bedding plane partially open	ø,		Bedding plane partially open
31	Parting			Parting
32	Shear plane	<u>ه</u>		Shear plane
33	Face cleat	•		Face cleat
34	Butt cleat	•		Butt cleat
35	Intrusive contact	*		Intrusive contact
36	Irregular fracture	*		Irregular fracture
37	Open joint >5 mm aperture	• ,		Level 2
38	Closed joint <5 mm aperture	•		Level 3
39	Vein	<u>بر</u> ک		Level 3
40	Filled joint - SN	<u>ہ</u>		Level 3
41	Filled joint - VN <1 mm	•		Level 3
42	Filled joint - CT 1 mm to <10 mm	• <u>•</u>		Level 3
43	Filled joint - FD > 10 mm	•		Level 3
44	Lithozone boundary	X		Lithozone boundary
45	Bedding plane	•		
46	Top of mineralisation	✓		
47	Base of mineralisation	 		
48	Crossbedding			

Figure 3 BH303 fractures orientation density contour plan – pole vectors, MN, lower hemisphere

Figure 5 BH303 filled joint – FD >10mm density contour plan - pole vectors, MN, lower hemisphere

4.0 BH303 borehole deviation data

Depth	INCL	AZ	Easting	Northing	TVD
m	DEGREE	DEGREE	[m]	[m]	[m]
0	0.45	225.71	0	0	0
1	0.1	205.85	-0.00383	-0.00403	0.999982
2	0.16	117.79	-0.00243	-0.00504	1.99998
3	0.11	143.1	-0.00073	-0.00665	2.99998
4	0.16	143.62	0.000704	-0.00848	3.99997
5	0.17	158.36	0.002098	-0.01104	4.99997
6	0.18	163.77	0.002929	-0.01388	5.99997
7	0.24	161.81	0.004007	-0.01759	6.99996
8	0.22	163.99	0.005283	-0.02138	7.99995
9	0.26	169.41	0.006196	-0.02542	8.99994
10	0.26	169.44	0.006964	-0.02994	9.99993
11	0.27	171.85	0.007736	-0.03446	10.9999
12	0.25	175.03	0.008255	-0.03901	11.9999
13	0.25	176.24	0.008519	-0.04339	12.9999
14	0.26	180.26	0.008587	-0.04785	13.9999
15	0.24	185.56	0.008414	-0.05221	14.9999
16	0.22	185.58	0.00794	-0.05616	15.9999
17	0.21	186.71	0.007655	-0.05982	16.9999
18	0.21	187.92	0.007181	-0.06345	17.9999
19	0.21	187.17	0.006717	-0.06709	18.9999
20	0.19	186.48	0.006292	-0.07051	19.9998
21	0.19	179.46	0.006093	-0.07383	20.9998
22	0.17	177.03	0.006231	-0.07696	21.9998

The data are presented in Table 2 below.

BH303 Bullseye Plot

BH303 Cylindrical Plot

Appendix 1

Feature	Midpoint	Dip	Azimuth	Interpreted feature
ID	mbgl	deg.	deg. MN	description
1	2.81			Top of data
2	2.83	23	140	Bedding plane
3	2.86	25	135	Filled joint - FD > 10 mm
4	2.88	18	121	Bedding plane
5	2.97	3	199	Bedding plane
6	2.97	1	266	Bedding plane
7	3.04	14	196	Bedding plane
8	3.04	23	333	Filled joint - FD > 10 mm
9	3.07	11	147	Bedding plane
10	3.13	12	320	Bedding plane
11	3.15	9	294	Bedding plane
12	3.16	2	319	Bedding plane
13	3.16	3	316	Bedding plane
14	3.17	2	318	Bedding plane
15	3.18	5	295	Bedding plane
16	3.19	9	358	Bedding plane
17	3.21	14	18	Bedding plane
18	3.24	5	123	Bedding plane
19	3.25	7	169	Bedding plane
20	3.27	15	137	Bedding plane
21	3.31	1	324	Bedding plane
22	3.32	3	140	Bedding plane
23	3.39	10	315	Bedding plane
24	3.40	9	319	Bedding plane
25	3.43	6	138	Bedding plane
26	3.44	5	143	Bedding plane
27	3.48	10	197	Bedding plane
28	3.49	11	207	Bedding plane
29	3.54	4	243	Bedding plane
30	3.55	3	244	Bedding plane
31	3.65	9	67	Bedding plane
32	3.69	10	40	Bedding plane
33	3.78	10	31	Bedding plane
34	3.84	7	15	Bedding plane
35	3.93	46	319	Filled joint - CT 1 mm to <10 mm
36	3.95	3	66	Bedding plane
37	3.96	2	67	Bedding plane
38	3.99	8	331	Bedding plane
39	4.01	6	353	Bedding plane

Tabulated interpreted features report for BH303

40	4.03	5	13	Bedding plane
41	4.04	3	12	Bedding plane
42	4.10	8	59	Bedding plane
43	4.12	9	56	Bedding plane
44	4.13	8	40	Bedding plane
45	4.20	43	257	Filled joint - CT 1 mm to <10 mm
46	4.20	10	48	Bedding plane
47	4.21	10	49	Bedding plane
48	4.27	31	244	Filled joint - CT 1 mm to <10 mm
49	4.45	9	169	Bedding plane
50	4.47	9	173	Bedding plane
51	4.75	5	73	Bedding plane
52	4.75	3	50	Bedding plane
53	4.77	4	71	Bedding plane
54	4.82	3	57	Bedding plane
55	4.88	3	75	Bedding plane
56	4.89	2	68	Bedding plane
57	4.90	4	55	Bedding plane
58	4.91	8	42	Bedding plane
59	4.95	7	55	Bedding plane
60	4.97	4	63	Bedding plane
61	4.98	3	45	Bedding plane
62	4.99	4	35	Bedding plane
63	4.99	3	91	Bedding plane
64	5.02	10	78	Bedding plane
65	5.05	7	18	Bedding plane
66	5.06	6	340	Bedding plane
67	5.08	4	219	Bedding plane
68	5.09	3	230	Bedding plane
69	5.09	2	217	Bedding plane
70	5.10	3	218	Bedding plane
71	5.11	2	262	Bedding plane
72	5.12	4	332	Bedding plane
73	5.22	5	57	Bedding plane
74	5.27	10	81	Bedding plane
75	5.33	6	81	Bedding plane
76	5.40	5	73	Bedding plane
77	5.42	3	53	Bedding plane
78	5.44	5	50	Bedding plane
79	5.48	4	58	Bedding plane
80	5.51	5	29	Bedding plane
81	5.56	5	267	Bedding plane
82	5.59	5	245	Bedding plane
83	5.60	4	236	Bedding plane
84	5.69	4	59	Bedding plane

85	5.70	4	37	Bedding plane
86	5.77	3	300	Bedding plane
87	5.80	6	24	Bedding plane
88	5.91	56	139	Filled joint - CT 1 mm to <10 mm
89	5.93	59	137	Filled joint - CT 1 mm to <10 mm
90	5.96	5	38	Bedding plane
91	6.16	6	41	Bedding plane
92	6.18	5	41	Bedding plane
93	6.23	6	68	Bedding plane
94	6.31	9	25	Bedding plane
95	6.37	2	46	Bedding plane
96	6.40	4	63	Bedding plane
97	6.49	2	52	Bedding plane
98	6.50	3	53	Bedding plane
99	6.60	4	58	Bedding plane
100	6.73	3	61	Bedding plane
101	6.74	1	38	Bedding plane
102	6.78	5	44	Bedding plane
103	6.79	3	53	Bedding plane
104	6.81	4	18	Bedding plane
105	6.81	4	33	Bedding plane
106	6.82	3	34	Bedding plane
107	6.83	3	28	Bedding plane
108	6.90	6	68	Bedding plane
109	6.92	2	46	Bedding plane
110	6.97	76	240	Filled joint - CT 1 mm to <10 mm
111	6.98	10	351	Bedding plane
112	7.03	6	341	Bedding plane
113	7.04	39	62	Filled joint - CT 1 mm to <10 mm
114	7.04	10	342	Bedding plane
115	7.05	10	347	Bedding plane
116	7.06	77	243	Filled joint - CT 1 mm to <10 mm
117	7.14	2	48	Bedding plane
118	7.17	59	273	Filled joint - CT 1 mm to <10 mm
119	7.18	1	296	Bedding plane
120	7.24	5	248	Bedding plane
121	7.26	8	11	Bedding plane
122	7.26	7	34	Bedding plane
123	7.27	7	43	Bedding plane
124	7.32	3	51	Bedding plane
125	7.33	8	42	Bedding plane
126	7.35	8	33	Bedding plane
127	7.37	8	74	Bedding plane
128	7.71	1	208	Bedding plane
129	7.82	6	146	Bedding plane

130	7.83	9	146	Bedding plane
131	7.83	24	263	Filled joint - CT 1 mm to <10 mm
132	7.90	2	319	Bedding plane
133	7.93	5	309	Bedding plane
134	7.98	6	188	Bedding plane
135	8.35	10	11	Bedding plane
136	8.37	7	14	Bedding plane
137	8.63	4	38	Bedding plane
138	8.64	4	51	Bedding plane
139	8.73	3	236	Bedding plane
140	8.87	4	235	Bedding plane
141	8.89	6	262	Bedding plane
142	9.01	1	67	Bedding plane
143	9.11	0	191	Bedding plane
144	9.16	3	101	Bedding plane
145	9.16	2	119	Bedding plane
146	9.41	1	44	Bedding plane
147	9.46	8	235	Bedding plane
148	9.82	13	315	Bedding plane
149	9.83	15	329	Bedding plane
150	9.84	16	322	Bedding plane
151	9.90	3	300	Bedding plane
152	9.91	9	320	Bedding plane
153	9.93	5	257	Bedding plane
154	9.95	9	247	Bedding plane
155	9.96	11	260	Bedding plane
156	10.00	3	43	Bedding plane
157	10.07	20	235	Bedding plane
158	10.11	10	318	Bedding plane
159	10.27	7	30	Bedding plane
160	10.28	6	35	Bedding plane
161	10.85	5	23	Bedding plane
162	10.87	7	36	Bedding plane
163	10.88	6	36	Bedding plane
164	10.89	7	338	Bedding plane
165	10.90	7	354	Bedding plane
166	11.12	4	78	Bedding plane
167	11.13	4	92	Bedding plane
168	11.21	34	295	Filled joint - CT 1 mm to <10 mm
169	11.23	1	271	Bedding plane
170	11.46	54	326	Filled joint - CT 1 mm to <10 mm
171	11.70	6	349	Bedding plane
172	12.04	2	331	Bedding plane
173	12.07	1	332	Bedding plane
174	12.43	6	240	Bedding plane

175	12.44	4	232	Bedding plane
176	12.45	4	90	Bedding plane
177	12.47	2	220	Bedding plane
178	12.49	11	36	Bedding plane
179	12.51	8	21	Bedding plane
180	12.58	4	29	Bedding plane
181	12.59	5	28	Bedding plane
182	12.63	3	331	Bedding plane
183	12.77	4	25	Bedding plane
184	12.78	4	339	Bedding plane
185	13.06	5	287	Bedding plane
186	13.19	6	297	Bedding plane
187	13.20	6	290	Bedding plane
188	13.21	7	293	Bedding plane
189	13.40	1	333	Bedding plane
190	13.43	8	314	Bedding plane
191	13.48	5	303	Bedding plane
192	13.50	6	301	Bedding plane
193	13.51	6	309	Bedding plane
194	13.52	6	313	Bedding plane
195	13.53	4	312	Bedding plane
196	13.61	7	310	Bedding plane
197	13.62	7	302	Bedding plane
198	13.71	2	299	Bedding plane
199	13.72	3	289	Bedding plane
200	13.93	7	306	Bedding plane
201	13.99	7	263	Bedding plane
202	14.03	11	259	Bedding plane
203	14.05	16	255	Bedding plane
204	14.08	13	285	Bedding plane
205	14.09	15	275	Bedding plane
206	14.12	2	87	Bedding plane
207	14.16	6	255	Bedding plane
208	14.17	9	246	Bedding plane
209	14.27	10	18	Bedding plane
210	14.32	12	25	Bedding plane
211	14.33	12	24	Bedding plane
212	14.34	13	18	Bedding plane
213	14.34	13	17	Bedding plane
214	14.35	13	16	Bedding plane
215	14.48	14	35	Bedding plane
216	14.49	11	32	Bedding plane
217	14.50	10	20	Bedding plane
218	14.51	9	5	Bedding plane
219	14.52	11	15	Bedding plane

220	14.53	12	24	Bedding plane
221	14.55	12	33	Bedding plane
222	14.56	10	21	Bedding plane
223	14.57	11	47	Bedding plane
224	14.60	14	42	Bedding plane
225	14.61	13	31	Bedding plane
226	14.62	8	41	Bedding plane
227	14.64	6	28	Bedding plane
228	14.76	16	42	Bedding plane
229	14.78	14	32	Bedding plane
230	14.79	14	40	Bedding plane
231	14.80	13	21	Bedding plane
232	14.84	8	349	Bedding plane
233	14.87	8	57	Bedding plane
234	14.90	5	54	Bedding plane
235	14.97	3	150	Bedding plane
236	15.02	4	211	Bedding plane
237	15.04	12	115	Bedding plane
238	15.06	8	108	Bedding plane
239	15.10	9	126	Bedding plane
240	15.12	10	118	Bedding plane
241	15.31	3	200	Bedding plane
242	15.32	5	189	Bedding plane
243	15.40	1	233	Bedding plane
244	15.43	0	286	Bedding plane
245	15.46	4	261	Bedding plane
246	15.47	2	270	Bedding plane
247	15.51	2	278	Bedding plane
248	15.58	2	218	Bedding plane
249	15.59	1	277	Bedding plane
250	15.61	1	59	Bedding plane
251	15.67	3	82	Bedding plane
252	15.68	3	316	Bedding plane
253	15.70	3	299	Bedding plane
254	15.72	4	299	Bedding plane
255	15.91	2	177	Bedding plane
256	15.93	1	147	Bedding plane
257	15.96	3	284	Bedding plane
258	15.97	2	287	Bedding plane
259	16.03	4	188	Bedding plane
260	16.04	3	211	Bedding plane
261	16.08	6	142	Bedding plane
262	16.13	20	242	Filled joint - FD > 10 mm
263	16.28	23	333	Filled joint - FD > 10 mm
264	16.43	5	311	Bedding plane

265	16.47	12	333	Bedding plane
266	16.48	11	317	Bedding plane
267	16.67	7	325	Bedding plane
268	16.80	10	330	Filled joint - CT 1 mm to <10 mm
269	16.81	25	239	Filled joint - FD > 10 mm
270	16.81	8	308	Bedding plane
271	16.85	35	275	Filled joint - CT 1 mm to <10 mm
272	16.85	17	215	Bedding plane
273	16.87	12	203	Bedding plane
274	16.99	21	247	Bedding plane
275	17.06	16	260	Bedding plane
276	17.08	3	271	Bedding plane
277	17.13	5	70	Bedding plane
278	17.17	2	313	Bedding plane
279	17.19	6	105	Bedding plane
280	17.22	14	95	Bedding plane
281	17.26	8	123	Bedding plane
282	17.28	3	102	Bedding plane
283	17.38	13	72	Bedding plane
284	17.39	14	73	Bedding plane
285	17.50	7	325	Bedding plane
286	17.56	7	151	Bedding plane
287	17.57	6	161	Bedding plane
288	17.65	4	235	Bedding plane
289	17.69	4	171	Bedding plane
290	17.85	6	234	Bedding plane
291	17.87	7	235	Bedding plane
292	17.95	1	240	Bedding plane
293	17.95	2	237	Bedding plane
294	18.05	4	190	Bedding plane
295	18.15	3	267	Bedding plane
296	18.17	3	251	Bedding plane
297	18.18	5	250	Bedding plane
298	18.29	2	217	Bedding plane
299	18.30	3	212	Bedding plane
300	18.32	1	243	Bedding plane
301	18.33	2	236	Bedding plane
302	18.35	2	270	Bedding plane
303	18.41	3	327	Bedding plane
304	18.42	4	318	Bedding plane
305	18.45	2	307	Bedding plane
306	18.46	4	305	Bedding plane
307	18.48	3	297	Bedding plane
308	18.61	2	300	Bedding plane
309	18.62	2	30	Bedding plane

310	18.69	11	67	Bedding plane
311	18.72	6	80	Bedding plane
312	18.75	7	76	Bedding plane
313	18.78	7	118	Bedding plane
314	18.80	4	112	Bedding plane
315	19.44	22	155	Bedding plane
316	19.45	21	157	Bedding plane
317	19.57	2	308	Bedding plane
318	19.63	4	275	Bedding plane
319	19.67	14	143	Bedding plane
320	19.68	17	148	Bedding plane
321	20.38	2	73	Bedding plane
322	20.72	5	96	Bedding plane
323	20.82	0	258	Bedding plane
324	20.85	2	99	Bedding plane
325	20.94	3	87	Bedding plane
326	21.14	5	138	Bedding plane
327	21.17	7	118	Bedding plane
328	21.18	6	108	Bedding plane
329	21.19	2	104	Bedding plane
330	21.21	4	89	Bedding plane
331	21.32	3	263	Bedding plane
332	21.35	3	249	Bedding plane
333	21.37	3	258	Bedding plane
334	21.57	82	252	Filled joint - CT 1 mm to <10 mm
335	21.62	11	36	Bedding plane
336	21.63	6	39	Bedding plane
337	21.85	6	67	Bedding plane
338	21.86	7	54	Bedding plane
339	21.90	8	45	Bedding plane
340	21.98	9	322	Bedding plane
341	22.01	5	337	Bedding plane
342	22.05	7	33	Bedding plane
343	22.11	4	348	Bedding plane
344	22.74	4	133	Bedding plane
345	22.82	4	120	Bedding plane
346	22.88	1	294	Bedding plane
347	22.89	3	255	Bedding plane
348	22.96	4	71	Bedding plane
349	22.96	3	95	Bedding plane
350	23.13	6	291	Bedding plane
351	23.14	4	310	Bedding plane
352	23.35	6	31	Bedding plane
353	23.35	7	14	Bedding plane
354	23.44	9	306	Bedding plane

ID	mbgl	deg.	deg. MN	description
Feature	Midpoint	Dip	Azimuth	Interpreted feature
358	23.65			Base of data
357	23.56	6	35	Bedding plane
356	23.54	5	56	Bedding plane
355	23.52	0	303	Bedding plane

Appendix 2

1:10 Interpretation logs

2.81 to 23.65 mbgl

Page 5

Douglas Partners- Liverpool 402 Macquarie Street

Borehole - BH304

ATV Interpreted Features Report

Groundsearch Australia Pty. Limited Issued: 16 May 2024

www.groundsearch.com.au

DISCLAIMER

The data used in this report were obtained using equipment manufactured by LIM Logging/Electromind. The interpretations given in this report are based on judgement and experience of Groundsearch Australia's personnel. They are provided for Douglas Partner's sole use in accordance with a specified brief. As such, the interpretation outcomes do not necessarily address all aspects of ground conditions and behaviour on the subject site. The responsibility of Groundsearch Australia is solely to Douglas Partners and it is not intended that any third party rely upon this report. This report shall not be reproduced either wholly or in part without the written permission of Groundsearch Australia Pty. Limited.

For and on behalf of Groundsearch Australia Pty. Limited

Alea

John Lea BSc (Hons) FAusIMM Principal Geologist Managing Director

Executive summary

The data contained in this report were obtained from one vertical borehole that was drilled as a component of the 2024 site investigation programme for Douglas Partners- Liverpool.

LIM Logging BHTV acoustic televiewer logging tool was run to collect data in the field on 07 May 2024. The data in this report are from 6.02 to 21.41 mbgl.

The 150 identified features are interpreted as bedding planes and fractures. The bedding to fracture ratio is 9.71:1.

The LIM Logging Display program has automatically recalculated the dip angle data to represent the borehole in the vertical position and the dip direction data are referenced to **Magnetic North** with density contours as pole vectors in the **lower hemisphere**.

Contents	Page
Disclaimer	2
Executive Summary	3
1.0 Background technical information2.0 Interpretation methodology3.0 BH304 interpretations4.0 BH304 borehole deviation data	5 6 8 15 - 18

List of Figures

Page

Figure 1 BH304 interpreted features density contours	10
Figure 2 BH304 bedding orientation plan	11
Figure 3 BH304 fractures orientation plan	12
Figure 4 BH304 filled joint - CT 1mm to <10mm fractures density contour plan	13
Figure 5 BH304 filled joint - FD > 10mm fractures density contour plan	14
• • • • •	

List of Tables	Page
Table 1 BH304 fracture percentages Table 2 BH304 borehole deviation data	8 15 - 18
Appendix 1 Tabulated interpreted features report for BH304	19 - 22

Appendix 2 1:10 Interpretation logs – 6.02 to 21.41 mbgl

1.0 Background technical information

The data contained in this report were obtained from one vertical borehole that was drilled as a component of the 2024 site investigation programme for Douglas Partners- Liverpool.

LIM Logging BHTV acoustic televiewer logging tool was run to collect data in the field on 07 May 2024. The data in this report are from 6.02 to 21.41 mbgl.

The 150 identified features are interpreted as bedding planes and fractures. The bedding to fracture ratio is 9.71:1.

The LIM Logging Display program has automatically recalculated the dip angle data to represent the borehole in the vertical position and the dip direction data are referenced to **Magnetic North** with density contours as pole vectors in the **lower hemisphere**.

The ATV takes an oriented image of the borehole using high-resolution sound waves. The acoustic image is displayed as amplitude variations. This information is used to detect bedding planes, fractures, and other borehole anomalies without the need to have clear fluid filling the boreholes. The tool works only in fluid-filled boreholes.

The televiewer digitises 180 measurements around the borehole at each high-resolution sample interval. These data can be oriented to Magnetic North and displayed in real-time while logging using the LIM BHTV Logging System.

Analysis software includes colour adjustment, fracture dip and dip direction determination, and classification of features. It allows information to be displayed on the graphical screen, plot, and in report format.

2.0 Interpretation methodology

It should be noted that the ATV is a bowspring-type, centralised tool and is affected by poor wallrock conditions known as rugosity and by mudcake adhered to the borehole wall.

The ATV data interpretation procedure is based on the superposition of curves on feature logs directly onto the computer screen by using a subjective, manual, two-point definition of a feature's top and base to produce a sine curve. Both sides of the amplitude plots represent magnetic north and magnetic south is in the centre of each plot. The low side, or trough, of the sine curve defines the dip direction of the feature.

The logging program automatically records the televiewer tool inclination angle and azimuth bearing and corrects for any borehole deviations. The curves are automatically given an identification number for subsequent referencing in a report file.

There are possibly more bedding planes and structural fractures appearing in the televiewer logs that have not been included in this report due to their poor graphic definition or the inability to resolve their geometry by superposing a sine curve using the program's two point method.

This report contains Magnetic North-referenced:

- Text summary of the interpreted features
- Logs that show geological features with their subjective interpretation curves shown at 1:10 scale. The logs are in standard format whereby the sonic image of the borehole wall is "flattened" onto the plot. The logs have the following additional features to enhance geological interpretations of the strata:
 - Natural gamma
 - ATV image referenced to Magnetic North
 - Colour-coded tadpoles that represent feature dip and dip direction
 - 3D ATV image with feature planes
 - Bedding polar plot referenced to Magnetic North
 - Fracture polar plot referenced to Magnetic North
 - Fracture frequency/M
 - Defect RQD
- Table containing feature curve ID, midpoint mbgl, dip angle, dip azimuth and feature description.
- Feature density contour plots as pole vectors in the lower hemisphere

The Rock Quality Designation (RQD) is a measure of the degree of jointing of fractures in a rock mass with:

- Image sample interval = 0.1 m
- Image length reported = 1.0 m

RQD values are:

- <0.25 very poor
- 0.25 0.50 poor
- 0.50 0.75 fair
- 0.75 0.90 good
- 0.90 1.00 excellent

3.0 BH304 interpretations

The 150 identified features are interpreted as bedding planes and fractures. The bedding to fracture ratio is 9.71:1.

The density contours for all interpreted features are shown in Figure 1. A description of each interpreted feature is presented in Appendix 1 and the combination log is presented in Appendix 2.

The 136 sedimentary features identified are bedding planes that appear to range in dip from 01° to 21°.

The 14 fractures identified are classified as:

Table 1

Interval section	Complete data 6.02 – 21.41 mbgl		
Feature classification	Feature count	Percentage	Dip range
Filled joint - CT 1mm to <10mm	08	57%	05° to 44°
Filled joint - FD >10mm	06	43%	19º to 80º

The sedimentary features identified are classified as:

Interval section	Complete data 6.02 – 21.41 mbgl		
Feature classification	Feature count	Dip range	
Bedding	136	01° to 21°	

Figures 1 to 5 present the orientation density contour plans for each feature set identified as pole vectors, MN, lower hemisphere.

Feature Dip is represented as 00^o being the horizontal plane and 90^o being the vertical plane.

Stereonets show the Feature Dip represented as 00^o being the centre of the stereonet and 90^o being the outer circle of the stereonet.

The standards used for reporting are outlined on the following page of this report.

	Code	Tadpole	Sine Wave	
2	Seam/zone base FZ			Fractured zone base
3	Seam/zone base	A		
4	Fracture plane - open	•		Fracture plane - open
5	Minor open fracture			Minor open fracture
6	Fracture plane - partially open	 Image: A set of the		Fracture plane - partially open
7	Filled fracture	ø		Filled fracture
8	Bedding plane open	*		Bedding plane open
9	Fracture plane - closed	 Image: A set of the		Fracture plane - closed
10	Top of data	Ø		Top of data
11	Induced fracture	<		Induced fracture
12	SWL	\sim		SWL
13	Fault - FT			Level 1
14	Rocktype boundary	ø		Rocktype boundary
15	Bedding separation plane	•		Bedding separation plane
16	Fracture plane - discontinuous	•		Fracture plane - discontinuous
17	Partially filled fracture	o C		Partially filled fracture
18	Irregular vein	<u>ہ</u>		Irregular vein
19	Unconformity	ø .		Unconformity
20	Base of casing	ø		Base of casing
21	Top of Coal Unit	ø .		Top of Coal Unit
22	Base of Coal Unit	ø		Base of Coal Unit
23	Base of weathering			Base of weathering
24	Top of breakout	<u>ہ</u>		Top of breakout
25	Base of breakout	<u>ہ</u>		Base of breakout
26	Top of washout	<u>ح</u>		Top of washout
27	Base of washout	Ó		Base of washout
28	Top of open fracture			Top of open fracture
29	Base of open fracture			Base of open fracture
30	Bedding plane partially open	Ø,		Bedding plane partially open
31	Parting			Parting
32	Shear plane	<u>ه</u>		Shear plane
33	Face cleat	•		Face cleat
34	Butt cleat	•		Butt cleat
35	Intrusive contact	*		Intrusive contact
36	Irregular fracture	*		Irregular fracture
37	Open joint >5 mm aperture	• ,		Level 2
38	Closed joint <5 mm aperture	•		Level 3
39	Vein	<u>بر</u> ک		Level 3
40	Filled joint - SN	<u>ب</u>		Level 3
41	Filled joint - VN <1 mm			Level 3
42	Filled joint - CT 1 mm to <10 mm	• <u>•</u>		Level 3
43	Filled joint - FD > 10 mm			Level 3
44	Lithozone boundary	X		Lithozone boundary
45	Bedding plane	• ,		
46	l op of mineralisation			
47	Base of mineralisation	● ,		
48	Crossbedding			

Figure 3 BH304 fractures orientation density contour plan – pole vectors, MN, lower hemisphere

Figure 4 BH304 filled joint – CT 1mm to <10mm density contour plan - pole vectors, MN, lower hemisphere

Figure 5 BH304 filled joint – FD >10mm density contour plan - pole vectors, MN, lower hemisphere

4.0 BH304 borehole deviation data

Depth	INCL	AZ	Easting	Northing	TVD
m	DEGREE	DEGREE	[m]	[m]	[m]
0	0.25	160.53	0	0	0
1	0.23	190.64	0.00036	-0.00378	0.99999
2	0.29	209.12	-0.00101	-0.00833	1.99998
3	0.43	224.48	-0.00493	-0.01292	2.99996
4	0.43	217.14	-0.00995	-0.01888	3.99993
5	0.38	224.69	-0.01446	-0.02433	4.99991
6	0.48	213.01	-0.01856	-0.02994	5.99988
7	0.56	211.37	-0.02286	-0.03792	6.99984
8	0.41	228.36	-0.02874	-0.04448	7.9998
9	0.39	213.11	-0.0327	-0.04912	8.99978
10	0.45	212.91	-0.03661	-0.05504	9.99976
11	0.52	217.38	-0.0415	-0.06226	10.9997
12	0.45	219.16	-0.04654	-0.06851	11.9997
13	0.46	222.77	-0.05179	-0.07458	12.9997
14	0.46	228.34	-0.05739	-0.08019	13.9996
15	0.46	226.71	-0.06333	-0.08557	14.9996
16	0.45	226.36	-0.06899	-0.09121	15.9996
17	0.46	224.98	-0.07457	-0.0968	16.9995
18	0.47	228.83	-0.08039	-0.10239	17.9995
19	0.42	231.02	-0.08642	-0.10723	18.9995
20	0.4	231.24	-0.09189	-0.11191	19.9994

The data are presented in Table 2 below.

BH304 Bullseye Plot

BH304 Cubic Plot

Feature	Midpoint	Dip	Azimuth	Interpreted feature
ID	mbgl	deg.	deg. MN	description
1	6.02			Top of data
2	6.03	3	291	Bedding plane
3	6.04	8	311	Bedding plane
4	6.06	6	346	Bedding plane
5	6.15	9	137	Bedding plane
6	6.16	10	133	Bedding plane
7	6.19	16	120	Bedding plane
8	6.23	10	103	Bedding plane
9	6.30	10	140	Bedding plane
10	6.33	11	146	Bedding plane
11	6.41	3	253	Bedding plane
12	6.41	77	250	Filled joint - FD > 10 mm
13	6.43	3	243	Bedding plane
14	6.49	2	264	Bedding plane
15	6.51	3	218	Bedding plane
16	6.53	8	219	Bedding plane
17	6.55	6	207	Bedding plane
18	6.56	3	279	Bedding plane
19	6.57	5	297	Bedding plane
20	6.58	6	277	Bedding plane
21	6.64	3	238	Bedding plane
22	6.65	2	192	Bedding plane
23	6.67	1	192	Bedding plane
24	6.71	3	300	Bedding plane
25	6.72	4	322	Bedding plane
26	6.93	12	149	Bedding plane
27	6.94	5	11	Filled joint - CT 1 mm to <10 mm
28	6.95	18	352	Filled joint - CT 1 mm to <10 mm
29	7.05	13	334	Bedding plane
30	7.12	8	245	Bedding plane
31	7.28	3	197	Bedding plane
32	7.67	3	271	Bedding plane
33	7.90	80	325	Filled joint - FD > 10 mm
34	8.03	4	294	Bedding plane
35	8.04	6	299	Bedding plane
36	8.05	4	280	Bedding plane
37	8.06	3	267	Bedding plane
38	8.07	1	289	Bedding plane
39	8.08	3	257	Bedding plane

Tabulated interpreted features report for BH304

40	8.49	18	246	Bedding plane
41	8.91	9	91	Filled joint - CT 1 mm to <10 mm
42	8.93	12	244	Filled joint - CT 1 mm to <10 mm
43	9.92	2	322	Bedding plane
44	9.92	4	341	Bedding plane
45	10.14	3	268	Bedding plane
46	10.18	8	341	Bedding plane
47	10.19	5	351	Bedding plane
48	10.20	3	316	Bedding plane
49	10.21	1	318	Bedding plane
50	10.22	3	299	Bedding plane
51	10.22	44	116	Filled joint - CT 1 mm to <10 mm
52	10.34	12	265	Bedding plane
53	10.35	12	251	Bedding plane
54	10.50	13	211	Bedding plane
55	10.51	13	206	Bedding plane
56	10.58	18	264	Bedding plane
57	10.68	18	257	Bedding plane
58	10.69	19	255	Bedding plane
59	10.75	8	248	Bedding plane
60	10.92	10	150	Bedding plane
61	11.35	7	183	Bedding plane
62	11.38	5	212	Bedding plane
63	12.71	4	294	Bedding plane
64	12.72	6	294	Bedding plane
65	12.74	3	289	Bedding plane
66	12.75	6	351	Bedding plane
67	12.88	4	334	Bedding plane
68	12.89	4	324	Bedding plane
69	13.04	2	170	Bedding plane
70	13.04	2	160	Bedding plane
71	13.09	2	261	Bedding plane
72	13.10	2	257	Bedding plane
73	13.25	5	207	Bedding plane
74	13.26	3	194	Bedding plane
75	13.49	7	346	Bedding plane
76 	13.49	-	324	Bedding plane
77	13.52	5	330	Bedding plane
78	13.52	5	339	Bedding plane
79	13.53	5	342	Bedding plane
80	13.55	6	342	Bedding plane
81	13.68	4	343	Bedding plane
82	13.70	2	318	Bedding plane
83	14.25	5	283	Bedding plane
84	14.28	6	2/7	Bedding plane

85	14.34	55	321	Filled joint - FD > 10 mm
86	14.35	13	349	Bedding plane
87	14.87	2	58	Bedding plane
88	14.88	2	57	Bedding plane
89	14.91	2	61	Bedding plane
90	14.92	2	51	Bedding plane
91	14.96	2	68	Bedding plane
92	15.02	3	239	Bedding plane
93	15.06	2	258	Bedding plane
94	15.11	4	294	Bedding plane
95	15.13	2	287	Bedding plane
96	15.14	5	299	Bedding plane
97	15.16	3	278	Bedding plane
98	15.24	5	341	Bedding plane
99	15.25	9	344	Bedding plane
100	15.33	7	324	Bedding plane
101	15.34	6	335	Bedding plane
102	15.53	5	219	Bedding plane
103	15.63	1	63	Bedding plane
104	15.65	5	319	Bedding plane
105	15.68	39	232	Filled joint - CT 1 mm to <10 mm
106	15.76	4	279	Bedding plane
107	15.81	6	354	Bedding plane
108	15.82	6	319	Bedding plane
109	15.91	5	345	Bedding plane
110	15.97	14	345	Bedding plane
111	16.00	20	340	Bedding plane
112	16.20	8	133	Bedding plane
113	16.24	10	287	Bedding plane
114	16.24	12	287	Bedding plane
115	16.29	4	307	Bedding plane
116	16.32	23	338	Filled joint - FD > 10 mm
117	16.33	31	184	Filled joint - FD > 10 mm
118	16.37	19	163	Filled joint - FD > 10 mm
119	16.40	4	254	Bedding plane
120	16.45	8	258	Bedding plane
121	16.52	15	345	Filled joint - CT 1 mm to <10 mm
122	16.54	20	10	Filled joint - CT 1 mm to <10 mm
123	16.57	21	104	Bedding plane
124	16.69	7	175	Bedding plane
125	16.73	2	101	Bedding plane
126	16.85	7	73	Bedding plane
127	16.90	12	76	Bedding plane
128	16.94	9	282	Bedding plane
129	16.99	10	291	Bedding plane

ID	mbgl	deg.	deg. MN	description
Feature	Midpoint	Dip	Azimuth	Interpreted feature
152	21.41			Base of data
151	20.41	7	242	Bedding plane
150	20.41	7	242	Bedding plane
149	19.61	6	213	Bedding plane
148	19.55	6	230	Bedding plane
147	19.55	7	238	Bedding plane
146	19.18	4	290	Bedding plane
145	18.41	11	270	Bedding plane
144	18.38	7	262	Bedding plane
143	17.82	4	301	Bedding plane
142	17.81	3	275	Bedding plane
141	17.76	3	271	Bedding plane
140	17.75	3	245	Bedding plane
139	17.66	10	335	Bedding plane
138	17.44	7	232	Bedding plane
137	17.41	7	233	Bedding plane
136	17.39	8	245	Bedding plane
135	17.31	7	224	Bedding plane
134	17.28	5	269	Bedding plane
133	17.24	8	234	Bedding plane
132	17.19	6	274	Bedding plane
131	17.06	10	316	Bedding plane
130	17.00	7	292	Bedding plane

1:10 Interpretation logs

6.02 To 21.41 mbgl

GAMMA	ATV IMAGE MN	FEATURE DIP & AZ MN	3D ATV + INTERP PLANES	Depth	BEDDING POLAR PLOT MN	FRACTURE POLAR PLOT MN	FRACT/M		2D	_
0 API 300	0 45000 0° 90° 180° 270° 0°	0 90	180*	1 m 10 m	Wulf Pict - LH- GSAal new	Wulff Plot - LH- GSAalinew	*:	l Polo		
				€.65			Ť		\square	Ŧ
	Service and the			8.70					\square	_
				8 75						
	1		- 11							
{			ALL THE STREET							
			100	8.85						İ
	油を			8 .90					H	t
	of the second	1	T S S T	8 .95					H	t
	P D A A			9 .00			_		\vdash	+
⊢/⊢			The state	9.05					\square	4
				9.10					\square	4
				9 15						4
			Constitution of the second	0.10						
				0.20						
				9.25						T
3				9.30					Π	t
			0.4	9 .35					H	ŧ
				9.40					H	1
⊢ (-		[++++++++++]		9 .45					\square	4
 }			1	9.50	Wulff Plot - LH - GSAalinew	Wulff Plot - L.H GSAalinew				4
╘┝┝	11			9.55	ostru: oran tudi or uran tudi Do	Depth: 8.50 [m] to 11.00 [m]				4
				0 60	$\langle \rangle$					ļ
				0.00						
				9.70	270° 60 90°	270°				T
	医松开门科			€9.75					H	T
				9 .80					H	t
} ⊢ } ⊢			17-11-F	9 .85					\vdash	t
⊢ } ─	THE NUMBER SHOW		20-52	9 .90		180°			\vdash	+
			2666	9.95	180° Counto Disklard Asidard	Counts Dip[deg] Azi[deg]			\square	_
			100	40.00	Mean 17 6.43 255.29	Mean 3 14.22 123.39	_		Ц	
			- 17	40.05	17 6.43 255.29					
{				10.00						
			通信器							
	La Carta and			10.15						T
1				10.20					Π	T
	二〇大田二			1 0.2 5					H	t
┝╞┝┝				4 0.30					H	1
		╞╇┼┼┼┼┼┼	-	4 0.3 5					H	4
┝┋┝				1 0.40			-		\parallel	4
⊢)⊢				10.45						4
		│ <u>॑</u> ╡┤┤┤┤┤┤		10.50						4
		14		0.55						1
			1							
										ſ
			ia/							Ţ
				MU.70						ţ
		┢╇┽┼┼┼┼┼┼		10.75						t
				4 0.8 0					H	1
				1 0.8 5					\parallel	4
╞╶╉╶┼─	-	┠┷┼┼┼┼┼┼		10.90			_		\parallel	4
┝╞┝┝	2	$ \uparrow + + + + + + + + + + + + + + + + + $	- 2	10.95			_			4
			14 E 14	11.00						ļ
			Sec. 1	1 05						1
	The second		and a							
				44.45						ſ
										Ĵ
			San See	¶1.20						1
0 API 300	0° 90° 180° 270° 0° 0 45000	0 90	180*	1 m 10 m	Wulf Pict - LH - GSAalhew	Wulff Plot - LH - GSAailnew	0.0	Ver;		ə }ko
GAMMA	ATV IMAGE MN	FEATURE DIP & AZ MN	3D ATV + INTERP PLANES	Depth	BEDDING POLAR PLOT MN	FRACTURE POLAR PLOT MN	FRACT/M	R	90	
										-

GAMMA	ATV IMAGE MN	FEATURE DIP & AZ MN	3D ATV + INTERP PLANES	Depth	BEDDING POLAR PLOT MN	FRACTURE POLAR PLOT MN	FRACT/M	RQ	10
0 API 300	0 45000 0° 90° 180° 270° 0'	0 90	180*	1 m.10 m	Wulf Plct - LH- GSAalhew	Wulf Plot - LH- GSAallnew	¥:0	jaj 8	
3				40.10					
				40.15					
		•							
				40.20					
				19.23					
			Sara an	9.30					T
				9.35					
				19.40					
				1 9.4 5					
				4 9.5 0	Wuff Plot - L H - GSAalinew Depth: 18.50 [m]	Wulff Plot - LH - GSAalinew			
				4 9.5 5	U"	Depth: 18.50 [m] to 21.00 [m] 0°			╡
				1 9.60	-60				+
+			1/6514	19.65					+
 ∛	America Line and		-	4 9.7 0	30	30			+
				1 9.7 5	270° 30 60 90°	270°			╉
			-	1 9.80					+
				4 9.8 5					+
			- 15.2 m	1 9.90		1002			+
				1 9.9 5	180° Counts Dialdeal Azildeal	Counts Dip[deg] Azi[deg]			
				20.00	Mean 6 5.94 239.58	Mean 0 0.00 0.00			+
				20.05	● 6 5.94 239.58				
				20.10					4
	J. Brite Statility		E Sta	20.15					
				20.20					
	Shellow Shiller			20.25					
				20.30					
				20.35					Щ
				20 40					
				20.45					
	Minter and the		111111	20.50					
			1112-1	20.55					
			THE STATE	20.60					
			W/Res	20.64					
				20.70					
			NUT A	20 75					
				20 20					
				20.00					
				20.00					
				20.50					
				20.50					
				21.00					
			141 2.13	21.00					
			50 100						T
				11.15					
				1 20€					
			13 . 2	1 1.25€					
				£ 1.30					
				2 1.35					
0 API 300	0° 90° 180° 270° 0'	0 90	180*	1.40×	Wulf Pict - LH- GSAalhew	Wulff Plot - LH - GSAailnew	0.6	Ver;	Fair
	40000			. m. um			ED ao Ta		
GAMMA	ATV IMAGE MN	FEATURE UIP & AZ MN	30 ATV + INTERP PLANES	Uepth	BEDDING PULAR PLOT MN	FRACTURE PULAR PLOT MN	FRACI/M		υ

Douglas Partners- Liverpool 402 Macquarie Street

Borehole - BH405

ATV Interpreted Features Report

Groundsearch Australia Pty. Limited Issued: 16 May 2024

www.groundsearch.com.au

DISCLAIMER

The data used in this report were obtained using equipment manufactured by LIM Logging/Electromind. The interpretations given in this report are based on judgement and experience of Groundsearch Australia's personnel. They are provided for Douglas Partner's sole use in accordance with a specified brief. As such, the interpretation outcomes do not necessarily address all aspects of ground conditions and behaviour on the subject site. The responsibility of Groundsearch Australia is solely to Douglas Partners and it is not intended that any third party rely upon this report. This report shall not be reproduced either wholly or in part without the written permission of Groundsearch Australia Pty. Limited.

For and on behalf of Groundsearch Australia Pty. Limited

Alea

John Lea BSc (Hons) FAusIMM Principal Geologist Managing Director

Executive summary

The data contained in this report were obtained from one vertical borehole that was drilled as a component of the 2024 site investigation programme for Douglas Partners- Liverpool.

LIM Logging BHTV acoustic televiewer logging tool was run to collect data in the field on 07 May 2024. The data in this report are from 1.55 to 13.36 mbgl.

The 125 identified features are interpreted as bedding planes and fractures. The bedding to fracture ratio is 9.42:1.

The LIM Logging Display program has automatically recalculated the dip angle data to represent the borehole in the vertical position and the dip direction data are referenced to **Magnetic North** with density contours as pole vectors in the **lower hemisphere**.

Contents	Page
Disclaimer	2
Executive Summary	3
1.0 Background technical information2.0 Interpretation methodology3.0 BH405 interpretations4.0 BH405 borehole deviation data	5 6 8 15 - 18

List of Figures

Page

Figure 1 BH405 interpreted features density contours	10
Figure 2 BH405 bedding orientation plan	11
Figure 3 BH405 fractures orientation plan	12
Figure 4 BH405 filled joint - CT 1mm to <10mm fractures density contour plan	13
Figure 5 BH405 filled joint - FD > 10mm fractures density contour plan	14

List of Tables	Page
Table 1 BH405 fracture percentages Table 2 BH405 borehole deviation data	8 15 - 18
Appendix 1 Tabulated interpreted features report for BH405	19 - 21

Appendix 2 1:10 Interpretation logs – 1.55 to 13.36 mbgl

1.0 Background technical information

The data contained in this report were obtained from one vertical borehole that was drilled as a component of the 2024 site investigation programme for Douglas Partners- Liverpool.

LIM Logging BHTV acoustic televiewer logging tool was run to collect data in the field on 07 May 2024. The data in this report are from 1.55 to 13.36 mbgl.

The 125 identified features are interpreted as bedding planes and fractures. The bedding to fracture ratio is 9.42:1.

The LIM Logging Display program has automatically recalculated the dip angle data to represent the borehole in the vertical position and the dip direction data are referenced to **Magnetic North** with density contours as pole vectors in the **lower hemisphere**.

The ATV takes an oriented image of the borehole using high-resolution sound waves. The acoustic image is displayed as amplitude variations. This information is used to detect bedding planes, fractures, and other borehole anomalies without the need to have clear fluid filling the boreholes. The tool works only in fluid-filled boreholes.

The televiewer digitises 180 measurements around the borehole at each high-resolution sample interval. These data can be oriented to Magnetic North and displayed in real-time while logging using the LIM BHTV Logging System.

Analysis software includes colour adjustment, fracture dip and dip direction determination, and classification of features. It allows information to be displayed on the graphical screen, plot, and in report format.

2.0 Interpretation methodology

It should be noted that the ATV is a bowspring-type, centralised tool and is affected by poor wallrock conditions known as rugosity and by mudcake adhered to the borehole wall.

The ATV data interpretation procedure is based on the superposition of curves on feature logs directly onto the computer screen by using a subjective, manual, two-point definition of a feature's top and base to produce a sine curve. Both sides of the amplitude plots represent magnetic north and magnetic south is in the centre of each plot. The low side, or trough, of the sine curve defines the dip direction of the feature.

The logging program automatically records the televiewer tool inclination angle and azimuth bearing and corrects for any borehole deviations. The curves are automatically given an identification number for subsequent referencing in a report file.

There are possibly more bedding planes and structural fractures appearing in the televiewer logs that have not been included in this report due to their poor graphic definition or the inability to resolve their geometry by superposing a sine curve using the program's two point method.

This report contains Magnetic North-referenced:

- Text summary of the interpreted features
- Logs that show geological features with their subjective interpretation curves shown at 1:10 scale. The logs are in standard format whereby the sonic image of the borehole wall is "flattened" onto the plot. The logs have the following additional features to enhance geological interpretations of the strata:
 - Natural gamma
 - ATV image referenced to Magnetic North
 - Colour-coded tadpoles that represent feature dip and dip direction
 - 3D ATV image with feature planes
 - Bedding polar plot referenced to Magnetic North
 - Fracture polar plot referenced to Magnetic North
 - Fracture frequency/M
 - Defect RQD
- Table containing feature curve ID, midpoint mbgl, dip angle, dip azimuth and feature description.
- Feature density contour plots as pole vectors in the lower hemisphere

The Rock Quality Designation (RQD) is a measure of the degree of jointing of fractures in a rock mass with:

- Image sample interval = 0.1 m
- Image length reported = 1.0 m

RQD values are:

- <0.25 very poor
- 0.25 0.50 poor
- 0.50 0.75 fair
- 0.75 0.90 good
- 0.90 1.00 excellent

3.0 BH405 interpretations

The 125 identified features are interpreted as bedding planes and fractures. The bedding to fracture ratio is 9.42:1.

The density contours for all interpreted features are shown in Figure 1. A description of each interpreted feature is presented in Appendix 1 and the combination log is presented in Appendix 2.

The 125 sedimentary features identified are bedding planes that appear to range in dip from flat-lying to 25⁰.

The 12 fractures identified are classified as:

Table 1

Interval section	Complete		
Feature classification	Feature count	Percentage	Dip range
Filled joint - CT 1mm to <10mm	08	67%	04 [°] to 72 [°]
Filled joint - FD >10mm	04	33%	30° to 44°

The sedimentary features identified are classified as:

Interval section	Complete data 1.55 – 13.36 mbgl			
Feature classification	Feature count	Dip range		
Bedding	125	00° to 25°		

Figures 1 to 5 present the orientation density contour plans for each feature set identified as pole vectors, MN, lower hemisphere.

Feature Dip is represented as 00^o being the horizontal plane and 90^o being the vertical plane.

Stereonets show the Feature Dip represented as 00^o being the centre of the stereonet and 90^o being the outer circle of the stereonet.

The standards used for reporting are outlined on the following page of this report.

	Code	Tadpole	Sine Wave	
2	Seam/zone base FZ			Fractured zone base
3	Seam/zone base	A		
4	Fracture plane - open	•		Fracture plane - open
5	Minor open fracture	 Image: A set of the		Minor open fracture
6	Fracture plane - partially open	•		Fracture plane - partially open
7	Filled fracture	ø		Filled fracture
8	Bedding plane open	*		Bedding plane open
9	Fracture plane - closed	 Image: A set of the		Fracture plane - closed
10	Top of data	Ø		Top of data
11	Induced fracture	<		Induced fracture
12	SWL	\sim		SWL
13	Fault - FT			Level 1
14	Rocktype boundary	ø		Rocktype boundary
15	Bedding separation plane	•		Bedding separation plane
16	Fracture plane - discontinuous	•		Fracture plane - discontinuous
17	Partially filled fracture	o C		Partially filled fracture
18	Irregular vein	<u>ہ</u>		Irregular vein
19	Unconformity	ø .		Unconformity
20	Base of casing	ø		Base of casing
21	Top of Coal Unit	ø		Top of Coal Unit
22	Base of Coal Unit	ø		Base of Coal Unit
23	Base of weathering			Base of weathering
24	Top of breakout	<u>ہ</u>		Top of breakout
25	Base of breakout	<u>ہ</u>		Base of breakout
26	Top of washout	<u>ح</u>		Top of washout
27	Base of washout	Ó		Base of washout
28	Top of open fracture			Top of open fracture
29	Base of open fracture			Base of open fracture
30	Bedding plane partially open	ø,		Bedding plane partially open
31	Parting			Parting
32	Shear plane	<u>ه</u>		Shear plane
33	Face cleat	•		Face cleat
34	Butt cleat	•		Butt cleat
35	Intrusive contact	*		Intrusive contact
36	Irregular fracture	*		Irregular fracture
37	Open joint >5 mm aperture	• ,		Level 2
38	Closed joint <5 mm aperture	•		Level 3
39	Vein	<u>بر</u> ک		Level 3
40	Filled joint - SN	<u>ہ</u>		Level 3
41	Filled joint - VN <1 mm	•		Level 3
42	Filled joint - CT 1 mm to <10 mm	• <u>•</u>		Level 3
43	Filled joint - FD > 10 mm	•		Level 3
44	Lithozone boundary	X		Lithozone boundary
45	Bedding plane	•		
46	Top of mineralisation	✓		
47	Base of mineralisation	 		
48	Crossbedding			

Figure 3 BH405 fractures orientation density contour plan – pole vectors, MN, lower hemisphere

Figure 4 BH405 filled joint – CT 1mm to <10mm density contour plan - pole vectors, MN, lower hemisphere

Figure 5 BH405 filled joint – FD >10mm density contour plan - pole vectors, MN, lower hemisphere

4.0 BH405 borehole deviation data

Depth	INCL	AZ	Easting	Northing	TVD
m	DEGREE	DEGREE	[m]	[m]	[m]
0	0.82	140.99	0	0	0
1	0.14	57.67	0.006576	-0.00615	0.999947
2	0.2	84.6	0.009624	-0.00568	1.99994
3	0.2	96.64	0.013313	-0.00578	2.99994
4	0.25	93.26	0.017601	-0.00623	3.99993
5	0.24	83.69	0.021888	-0.00587	4.99992
6	0.25	89.04	0.02623	-0.00558	5.99991
7	0.28	98.16	0.031008	-0.00584	6.9999
8	0.25	91.61	0.035589	-0.00627	7.99989
9	0.24	81.3	0.039852	-0.00598	8.99988
10	0.3	79.74	0.04441	-0.00504	9.99987
11	0.28	78.83	0.049396	-0.00405	10.9999
12	0.27	83.66	0.054169	-0.00348	11.9998

The data are presented in Table 2 below.

BH405 Bullseye Plot

16

BH405 Cubic Plot

Feature	Midpoint	Dip	Azimuth	Interpreted feature
		uey.	deg. Min	
1 2	1.55	7	75	Rodding plana
2	1.09	2	100	Bedding plane
3	1.70	S Q	36	Bedding plane
4 5	1.72	0 1 /	211	Bedding plane
5	1.70	19	190	Bedding plane
7	1.09	12	180	Bedding plane
7 Q	1.90	6	100	Bedding plane
0	1.94	0	44	Bedding plane
9 10	2.01	9 17	41	Bedding plane
10	2.01	14	101	Bedding plane
12	2.02	13 25	220	Bedding plane
12	2.03	23	220	Filled joint ED > 10 mm
10	2.09	44 5	200	Filled Joint - FD > 10 mm
14	2.20	5	22	Bedding plane
10	2.20	3 72	336	Filled joint CT 1 mm to <10 mm
17	2.33	2	125	
10	2.30	2	133	Bedding plane
10	2.30	3 2	142	Bedding plane
19	2.43	۲ ۲	155	Bedding plane
20	2.51	14	155	Bedding plane
21	2.51	10	120	Bedding plane
22	2.53	10	120	Bedding plane
23	2.54	0	142	Bedding plane
24 25	2.55	9 10	190	Bedding plane
20	2.50	2	201	Bedding plane
20	2.02	2	137	Bedding plane
21	2.02	9 7	1/3	Bedding plane
20	2.00	r Q	158	Bedding plane
29	2.00	0	50	Bedding plane
30	2.93	9 12	17	Bedding plane
22	2.90	12	62	Bedding plane
32	2.90	6	02 57	Bedding plane
24	2.99	2	262	Bedding plane
25	4.55	3	203	Bedding plane
36	4.00	2	200 174	Bedding plane
30	4.73	3 //1	330	Filled joint - CT 1 mm to <10 mm
20	4.31 1 05	-+ ι Λ	180	
20	4.30	+ 2	180	Bodding plane
39	0.00	3	109	bedding plane

Tabulated interpreted features report for BH405

40	5.36	5	141	Bedding plane
41	5.42	2	310	Bedding plane
42	5.44	7	101	Bedding plane
43	5.46	4	248	Bedding plane
44	5.47	5	230	Bedding plane
45	5.64	4	208	Bedding plane
46	5.65	4	221	Bedding plane
47	5.66	4	237	Filled joint - CT 1 mm to <10 mm
48	5.99	6	251	Bedding plane
49	6.00	6	254	Bedding plane
50	6.01	4	284	Bedding plane
51	6.03	5	265	Bedding plane
52	6.11	1	303	Bedding plane
53	6.24	5	274	Bedding plane
54	6.28	4	244	Bedding plane
55	6.30	5	278	Bedding plane
56	6.31	5	268	Bedding plane
57	6.38	1	274	Bedding plane
58	6.38	2	285	Bedding plane
59	6.48	2	216	Bedding plane
60	6.54	3	313	Bedding plane
61	6.54	2	304	Bedding plane
62	6.60	2	301	Bedding plane
63	6.61	3	326	Bedding plane
64	6.77	3	309	Bedding plane
65	6.79	3	288	Bedding plane
66	6.82	3	286	Bedding plane
67	6.84	17	342	Filled joint - CT 1 mm to <10 mm
68	6.95	44	206	Filled joint - CT 1 mm to <10 mm
69	7.00	5	210	Bedding plane
70	7.16	2	194	Bedding plane
/1 70	7.18	5	196	Bedding plane
72	7.29	10	12	Bedding plane
73	7.30	5	25	Bedding plane
74	7.37	34	228	Filled joint - FD > 10 mm
75 70	7.42	15	345	Filled joint - CI 1 mm to <10 mm
76 77	7.48	30	41	Filled joint - $FD > 10 \text{ mm}$
70	7.50	39	18	Filled Joint - FD > 10 mm
78	7.54	20	186	Eilled joint CT 1 mm to 10 mm
79	7.75	31	167	
80	7.80	10	69	Bedding plane
01 02	7.98	4	134	Bedding plane
ŏ∠ 00	7.99	2	118	Bedding plane
ర ు	0.10	5	307	Bedding plane
84	8.18	5	305	Bedding plane

85	8.39	1	285	Bedding plane
86	8.43	1	277	Bedding plane
87	8.44	3	274	Bedding plane
88	8.48	5	208	Bedding plane
89	8.59	8	70	Bedding plane
90	8.61	7	74	Bedding plane
91	8.83	5	174	Bedding plane
92	9.07	13	203	Bedding plane
93	9.09	9	208	Bedding plane
94	9.11	7	180	Bedding plane
95	9.14	9	67	Bedding plane
96	9.20	3	68	Bedding plane
97	9.22	4	28	Bedding plane
98	9.24	4	18	Bedding plane
99	9.38	3	345	Bedding plane
100	9.40	6	323	Bedding plane
101	9.49	10	331	Bedding plane
102	9.50	8	329	Bedding plane
103	9.59	2	241	Bedding plane
104	10.09	3	14	Bedding plane
105	10.10	4	344	Bedding plane
106	10.16	3	297	Bedding plane
107	10.31	2	310	Bedding plane
108	10.43	1	329	Bedding plane
109	10.46	2	330	Bedding plane
110	10.47	6	347	Bedding plane
111	10.61	31	274	Filled joint - CT 1 mm to <10 mm
112	10.75	1	202	Bedding plane
113	10.84	3	326	Bedding plane
114	10.84	2	339	Bedding plane
115	11.55	8	122	Bedding plane
116	11.94	0	224	Bedding plane
117	11.99	0	271	Bedding plane
118	12.00	5	187	Bedding plane
119	12.04	3	337	Bedding plane
120	12.07	8	158	Bedding plane
121	12.08	12	153	Bedding plane
122	12.38	3	1/3	Bedding plane
123	12.52	4	138	Bedding plane
124	12.93	1	86	Bedding plane
125	12.94	1	90	Bedding plane
126	13.18	3	213	Bedding plane
127	13.36	D .		Base of data
Feature	Midpoint	Dip	Azimuth	Interpreted feature
ID	mbgl	deg.	deg. MN	description

1:10 Interpretation logs

1.55 To 13.36 mbgl

	BAM(NAT	1	ATV IMAGE MN	FEATURE DIP & AZ MN 3D ATV + INTERP PLANES	Depth	BEDDING POLAR PLOT MN	FRACTURE POLAR PLOT MN	FRACT/M	RQD	
0	API	300	0 40000 0° 90° 180° 270° 0°	0 90 160*	1 m 10 m	Wulf Pld - LH- GSAalhew	Wulfi Plot - LH- GSAalinew	0.6	Ver Poo Fair	00 100 100
										Π
										Π
					• 0.1 ▶					Ħ
					• 0.2 ▶					Ħ
					• 0.2 ▶					+
					• 0.3 🕨					+
					• 0.3 ▶					+
					• 0.4 •					\square
					• 0.4 •					4
					• 0.4 ▶					
					4 05 ▶					
					. 0.6 .					
					0.0 0					
					■ U.0 ►					Π
					■ 0.7 ►					Ħ
					• 0.8 ►	1				
					4 0.8 ►					\parallel
					• 0.9 ►					
					• 0.9 ▶				\square	
<u> </u>					• 0.9 •				\square	\parallel
					• 1.0 ▶	Wulff Plot - LH - GSAallnew Depth: 0.00 [m] to 2.50 [m]	Wulff Plot - LH - GSAalinew			⊢
					• 1.1 ▶	0°	Depth: 0.00 [m] to 2.50 [m] 0°			\mathbb{H}
					• 1.1 •					Щ
					• 1.2 ▶	60	60			Ш
					• 1.2 ▶		30			
					1.3 ▶	270°	270° 30 60 90°			
					13					
					14					
					• 1.4 P	180°	180° Counte Dip[dog] Azifdog]			
					4 1.5 ▶	Counts Dip[deg] Azi[deg] Mean 16 3.80 163.17	Mean 1 72.31 336.01			Π
					• 1.5 ▶	 16 3.80 163.17 	1 72.31 336.01			Ħ
	ţ.		100 200 100		↓ 1.6 ▶					Η
	[Pales Sall		• 1.6 ▶					Η
			145 2 7		• 1.7 ▶					Η
	-		State and states		• 1.7 ▶					Η
	[all a		• 1.8 ▶					H
-	}				• 1.8 ▶					H
-	┞				• 1.9 ▶					H
-	5				• 1.9 ▶					H
	\vdash		-		• 2.0 ▶					H
	}				• 2.0 ▶					H
	[1.4		• 2.1 ▶					
<u> </u>	}		130		• 2.1 ▶					4
	L				2.2					
	/				2.2					
					23					
	{				22					
	{				· 2.3 P					
	ſ				2.4					
	2				● 2.4 ▶					T
	{		三情子前		₹ 2.5 ►					T
					4 2.5 ►					Ħ
					4 2.6 ⊨					Ħ
H					• 2.6 ▶					H
-	┨──				4 2.7 ▶					H
	/				• 2.7 ▶					\mathbb{H}
			Contraction and Alle Statistics and Statistics			I	1		Par	<u>∎</u> 1 1е.1

Douglas Partners- Liverpool 402 Macquarie Street

Borehole - BH406

ATV Interpreted Features Report

Groundsearch Australia Pty. Limited Issued: 17 May 2024

www.groundsearch.com.au

DISCLAIMER

The data used in this report were obtained using equipment manufactured by LIM Logging/Electromind. The interpretations given in this report are based on judgement and experience of Groundsearch Australia's personnel. They are provided for Douglas Partner's sole use in accordance with a specified brief. As such, the interpretation outcomes do not necessarily address all aspects of ground conditions and behaviour on the subject site. The responsibility of Groundsearch Australia is solely to Douglas Partners and it is not intended that any third party rely upon this report. This report shall not be reproduced either wholly or in part without the written permission of Groundsearch Australia Pty. Limited.

For and on behalf of Groundsearch Australia Pty. Limited

Alea

John Lea BSc (Hons) FAusIMM Principal Geologist Managing Director

Executive summary

The data contained in this report were obtained from one vertical borehole that was drilled as a component of the 2024 site investigation programme for Douglas Partners- Liverpool.

LIM Logging BHTV acoustic televiewer logging tool was run to collect data in the field on 07 May 2024. The data in this report are from 4.15 to 19.33 mbgl.

The 104 identified features are interpreted as bedding planes and fractures. The bedding to fracture ratio is 25:1.

The LIM Logging Display program has automatically recalculated the dip angle data to represent the borehole in the vertical position and the dip direction data are referenced to **Magnetic North** with density contours as pole vectors in the **lower hemisphere**.

Contents	Page
Disclaimer	2
Executive Summary	3
1.0 Background technical information2.0 Interpretation methodology3.0 BH406 interpretations4.0 BH406 borehole deviation data	5 6 8 15 - 18

List of Figures

Page

Figure 1 BH406 interpreted features density contours	10
Figure 2 BH406 bedding orientation plan	11
Figure 3 BH406 fractures orientation plan	12
Figure 4 BH406 filled joint - CT 1mm to <10mm fractures density contour plan	13
Figure 5 BH406 filled joint - FD > 10mm fractures density contour plan	14

List of Tables	Page
Table 1 BH406 fracture percentages Table 2 BH406 borehole deviation data	8 15 - 18
Appendix 1 Tabulated interpreted features report for BH406	19 - 21

Appendix 2 1:10 Interpretation logs – 4.15 to 19.33 mbgl

1.0 Background technical information

The data contained in this report were obtained from one vertical borehole that was drilled as a component of the 2024 site investigation programme for Douglas Partners- Liverpool.

LIM Logging BHTV acoustic televiewer logging tool was run to collect data in the field on 07 May 2024. The data in this report are from 4.15 to 19.33 mbgl.

The 104 identified features are interpreted as bedding planes and fractures. The bedding to fracture ratio is 25:1.

The LIM Logging Display program has automatically recalculated the dip angle data to represent the borehole in the vertical position and the dip direction data are referenced to **Magnetic North** with density contours as pole vectors in the **lower hemisphere**.

The ATV takes an oriented image of the borehole using high-resolution sound waves. The acoustic image is displayed as amplitude variations. This information is used to detect bedding planes, fractures, and other borehole anomalies without the need to have clear fluid filling the boreholes. The tool works only in fluid-filled boreholes.

The televiewer digitises 180 measurements around the borehole at each high-resolution sample interval. These data can be oriented to Magnetic North and displayed in real-time while logging using the LIM BHTV Logging System.

Analysis software includes colour adjustment, fracture dip and dip direction determination, and classification of features. It allows information to be displayed on the graphical screen, plot, and in report format.

2.0 Interpretation methodology

It should be noted that the ATV is a bowspring-type, centralised tool and is affected by poor wallrock conditions known as rugosity and by mudcake adhered to the borehole wall.

The ATV data interpretation procedure is based on the superposition of curves on feature logs directly onto the computer screen by using a subjective, manual, two-point definition of a feature's top and base to produce a sine curve. Both sides of the amplitude plots represent magnetic north and magnetic south is in the centre of each plot. The low side, or trough, of the sine curve defines the dip direction of the feature.

The logging program automatically records the televiewer tool inclination angle and azimuth bearing and corrects for any borehole deviations. The curves are automatically given an identification number for subsequent referencing in a report file.

There are possibly more bedding planes and structural fractures appearing in the televiewer logs that have not been included in this report due to their poor graphic definition or the inability to resolve their geometry by superposing a sine curve using the program's two point method.

This report contains Magnetic North-referenced:

- Text summary of the interpreted features
- Logs that show geological features with their subjective interpretation curves shown at 1:10 scale. The logs are in standard format whereby the sonic image of the borehole wall is "flattened" onto the plot. The logs have the following additional features to enhance geological interpretations of the strata:
 - Natural gamma
 - ATV image referenced to Magnetic North
 - Colour-coded tadpoles that represent feature dip and dip direction
 - 3D ATV image with feature planes
 - Bedding polar plot referenced to Magnetic North
 - Fracture polar plot referenced to Magnetic North
 - Fracture frequency/M
 - Defect RQD
- Table containing feature curve ID, midpoint mbgl, dip angle, dip azimuth and feature description.
- Feature density contour plots as pole vectors in the lower hemisphere

The Rock Quality Designation (RQD) is a measure of the degree of jointing of fractures in a rock mass with:

- Image sample interval = 0.1 m
- Image length reported = 1.0 m

RQD values are:

- <0.25 very poor
- 0.25 0.50 poor
- 0.50 0.75 fair
- 0.75 0.90 good
- 0.90 1.00 excellent

3.0 BH406 interpretations

The 104 identified features are interpreted as bedding planes and fractures. The bedding to fracture ratio is 25:1.

The density contours for all interpreted features are shown in Figure 1. A description of each interpreted feature is presented in Appendix 1 and the combination log is presented in Appendix 2.

The 100 sedimentary features identified are bedding planes that appear to range in dip from flat-lying to 25^o.

The 4 fractures identified are classified as:

Table 1

Interval section	Complete	data 4.15 – 19.33 mbgl	
Feature classification	Feature count	Percentage	Dip range
Filled joint - CT 1mm to <10mm	02	50%	28° to 70°
Filled joint - FD >10mm	02	50%	12º to 21º

The sedimentary features identified are classified as:

Interval section	Complete data 4.15 – 19.33 mbgl				
Feature classification	Feature count	Dip range			
Bedding	100	00° to 25°			

Figures 1 to 5 present the orientation density contour plans for each feature set identified as pole vectors, MN, lower hemisphere.

Feature Dip is represented as 00^o being the horizontal plane and 90^o being the vertical plane.

Stereonets show the Feature Dip represented as 00^o being the centre of the stereonet and 90^o being the outer circle of the stereonet.

The standards used for reporting are outlined on the following page of this report.

	Code	Tadpole	Sine Wave	
2	Seam/zone base FZ			Fractured zone base
3	Seam/zone base	A		
4	Fracture plane - open	•		Fracture plane - open
5	Minor open fracture			Minor open fracture
6	Fracture plane - partially open	•		Fracture plane - partially open
7	Filled fracture	ø		Filled fracture
8	Bedding plane open	*		Bedding plane open
9	Fracture plane - closed	 Image: A set of the		Fracture plane - closed
10	Top of data	Ø		Top of data
11	Induced fracture	<		Induced fracture
12	SWL	\sim		SWL
13	Fault - FT			Level 1
14	Rocktype boundary	ø		Rocktype boundary
15	Bedding separation plane	•		Bedding separation plane
16	Fracture plane - discontinuous	•		Fracture plane - discontinuous
17	Partially filled fracture	o C		Partially filled fracture
18	Irregular vein	<u>ہ</u>		Irregular vein
19	Unconformity	ø .		Unconformity
20	Base of casing	ø		Base of casing
21	Top of Coal Unit	ø		Top of Coal Unit
22	Base of Coal Unit	ø		Base of Coal Unit
23	Base of weathering			Base of weathering
24	Top of breakout	<u>ہ</u>		Top of breakout
25	Base of breakout	<u>ہ</u>		Base of breakout
26	Top of washout	<u>ح</u>		Top of washout
27	Base of washout	Ó		Base of washout
28	Top of open fracture			Top of open fracture
29	Base of open fracture			Base of open fracture
30	Bedding plane partially open	ø,		Bedding plane partially open
31	Parting			Parting
32	Shear plane	<u>ه</u>		Shear plane
33	Face cleat	•		Face cleat
34	Butt cleat	•		Butt cleat
35	Intrusive contact	*		Intrusive contact
36	Irregular fracture	*		Irregular fracture
37	Open joint >5 mm aperture	• ,		Level 2
38	Closed joint <5 mm aperture	•		Level 3
39	Vein	<u>بر</u> ک		Level 3
40	Filled joint - SN	<u>ہ</u>		Level 3
41	Filled joint - VN <1 mm	•		Level 3
42	Filled joint - CT 1 mm to <10 mm	• <u>•</u>		Level 3
43	Filled joint - FD > 10 mm	•		Level 3
44	Lithozone boundary	X		Lithozone boundary
45	Bedding plane	•		
46	Top of mineralisation	✓		
47	Base of mineralisation	 		
48	Crossbedding			

Figure 3 BH406 fractures orientation density contour plan – pole vectors, MN, lower hemisphere

Figure 4 BH406 filled joint – CT 1mm to <10mm density contour plan - pole vectors, MN, lower hemisphere

Figure 5 BH406 filled joint – FD >10mm density contour plan - pole vectors, MN, lower hemisphere

4.0 BH406 borehole deviation data

Depth	INCL	AZ	Easting	Northing	TVD	
m	DEGREE	DEGREE	DEGREE [m]		[m]	
0	0.84	227.31	0	0	0	
1	0.84	229.15	-0.0109	-0.0099	0.999891	
2	0.6	225.24	-0.0207	-0.01843	1.99981	
3	0.66	229.01	-0.0278	-0.02543	2.99976	
4	0.75	231.77	-0.0381	-0.03352	3.99967	
5	0.73	237.64	-0.0484	-0.04107	4.99959	
6	0.8	233.45	-0.0596	-0.04846	5.9995	
7	0.73	229.78	-0.0695	-0.05686	6.99941	
8	0.68	237.4	-0.0792	-0.06393	7.99934	
9	0.71	234.49	-0.0891	-0.07038	8.99927	
10	0.68	232.8	-0.0990	-0.07772	9.9992	
11	0.64	236.88	-0.1084	-0.08417	10.9991	
12	0.65	234.65	-0.1180	-0.09036	11.9991	
13	0.61	232.29	-0.1272	-0.09729	12.999	
14	0.55	231.3	-0.1353	-0.10355	13.9989	
15	0.58	237.04	-0.1438	-0.10924	14.9989	
16	0.56	234.35	-0.1520	-0.11493	15.9988	
17	0.53	237.02	-0.1599	-0.12024	16.9988	

The data are presented in Table 2 below.

BH406 Bullseye Plot

16

BH406 Cylindrical Plot

Appendix 1

Feature	Midpoint	Dip	Azimuth	Interpreted feature
ID	mbgl	deg.	deg. MN	description
1	4.15			Top of data
2	4.28	5	252	Bedding plane
3	4.84	2	163	Bedding plane
4	5.77	6	221	Bedding plane
5	5.78	7	228	Bedding plane
6	5.78	7	221	Bedding plane
7	5.80	7	234	Bedding plane
8	5.82	2	289	Bedding plane
9	5.83	4	258	Bedding plane
10	5.86	5	216	Bedding plane
11	5.87	5	238	Bedding plane
12	5.90	9	221	Bedding plane
13	5.91	6	221	Bedding plane
14	6.24	3	240	Bedding plane
15	6.26	1	223	Bedding plane
16	6.27	2	236	Bedding plane
17	6.34	3	253	Bedding plane
18	6.35	2	249	Bedding plane
19	6.45	4	241	Bedding plane
20	6.46	4	243	Bedding plane
21	6.51	4	253	Bedding plane
22	6.52	5	254	Bedding plane
23	6.81	1	228	Bedding plane
24	6.82	4	227	Bedding plane
25	6.92	6	231	Bedding plane
26	6.93	6	241	Bedding plane
27	7.01	5	247	Bedding plane
28	7.02	6	240	Bedding plane
29	7.11	8	241	Bedding plane
30	7.20	7	231	Bedding plane
31	7.42	17	50	Bedding plane
32	7.45	13	66	Bedding plane
33	7.47	21	49	Bedding plane
34	7.49	25	50	Bedding plane
35	7.75	5	251	Bedding plane
36	7.76	4	227	Bedding plane
37	7.79	21	177	Filled joint - FD > 10 mm
38	7.82	11	83	Bedding plane
39	7.83	4	95	Bedding plane

Tabulated interpreted features report for BH406

40	7.94	28	32	Filled joint - CT 1 mm to <10 mm
41	7.97	25	152	Bedding plane
42	8.55	8	39	Bedding plane
43	8.56	6	41	Bedding plane
44	8.59	11	48	Bedding plane
45	8.61	14	48	Bedding plane
46	8.63	17	52	Bedding plane
47	8.64	14	46	Bedding plane
48	8.78	12	9	Bedding plane
49	8.89	3	335	Bedding plane
50	8.92	2	320	Bedding plane
51	8.96	4	328	Bedding plane
52	9.27	4	249	Bedding plane
53	9.28	5	263	Bedding plane
54	9.33	4	342	Bedding plane
55	9.36	3	276	Bedding plane
56	9.42	4	233	Bedding plane
57	9.45	6	220	Bedding plane
58	9.63	5	59	Bedding plane
59	9.69	7	41	Bedding plane
60	9.71	6	46	Bedding plane
61	9.79	5	79	Bedding plane
62	9.80	2	66	Bedding plane
63	10.33	70	253	Filled joint - CT 1 mm to <10 mm
64	10.39	1	311	Bedding plane
65	10.47	7	284	Bedding plane
66	10.60	4	254	Bedding plane
67	10.73	5	201	Bedding plane
68	11.44	1	236	Bedding plane
69	11.45	2	247	Bedding plane
70	11.47	4	271	Bedding plane
71	11.48	3	278	Bedding plane
72	11.49	11	312	Bedding plane
73	11.51	9	318	Bedding plane
74	11.56	3	284	Bedding plane
75	11.86	5	267	Bedding plane
76	11.88	4	253	Bedding plane
77	11.95	1	273	Bedding plane
78	12.10	3	291	Bedding plane
79	12.10	2	300	Bedding plane
80	12.26	3	318	Bedding plane
81	12.28	6	320	Bedding plane
82	12.41	4	130	Bedding plane
83	12.42	5	116	Bedding plane
84	14.54	5	238	Bedding plane

ID	mbgl	deg.	deg. MN	description
Feature	Midpoint	Dip	Azimuth	Interpreted feature
106	19.33			Base of data
105	18.00	2	335	Bedding plane
104	17.98	4	327	Bedding plane
103	17.97	4	340	Bedding plane
102	17.95	1	304	Bedding plane
101	17.94	3	327	Bedding plane
100	17.92	0	305	Bedding plane
99	17.92	0	327	Bedding plane
98	17.89	3	342	Bedding plane
97	17.64	3	245	Bedding plane
96	16.88	1	265	Bedding plane
95	16.86	5	280	Bedding plane
94	16.45	5	137	Bedding plane
93	16.44	4	136	Bedding plane
92	16.39	4	280	Bedding plane
91	16.38	4	287	Bedding plane
90	16.30	12	172	Filled joint - FD > 10 mm
89	16.28	5	152	Bedding plane
88	15.51	8	304	Bedding plane
87	15.33	3	284	Bedding plane
86	15.32	3	284	Bedding plane
85	14.86	3	267	Bedding plane

Appendix 2

1:10 Interpretation logs

4.15 To 19.33 mbgl

GAM(NAT)	ATV IMAGE MN	FEATURE DIP & AZ MN	3D ATV + INTERP PLANES	Depth	BEDDING POLAR PLOT M	FRACTURE POLAR PLOT MN	FRACT/M	RQD	
	0 45000			1m 10m					_ │
0 API 300	0° 90° 180° 270° 0'	0° 90° 180° 270° 0°	180*		Wulf Pict - LH - GSAalhew	Wulff Plot - LH - GSAallnew	9 · 0	Very poo Poor Fair	Good
				4.20					
				4.25					
			-	4.30				++	
				4.35					+
				4.40					Ħ
				4.45					Ħ
				4.50					T
			and the	4.60					
			100	4.65					
			12.2 16	4.70					4
				4.75				+++	+
\square				4.80					+
		<u></u>		4.85					+
	- The -		Ester	4.90					Ħ
				4.95					Ħ
				5.00					
			e tri 🖉	5.10					
				5.15					4
				5.20				\square	+
				5.25				$\left \right \right $	+
	8			5.30					Ħ
	1			5.35					Ħ
				5.40					Ħ
				5.45					
				5.55					
				5.60					
				5.65					4
			- 6	5.70					+
				5.75					+
				5.80					Ħ
				5.85					Ħ
				5.90 5.95					
				6.00	Wulff Plot - L H - GSAallnew				
			3 M	6.05	Depth: 5.00 [m] to 7.50 [m] 0°	Wulff Plot - LH - GSAalInew Depth: 5.00 [m] to 7.50 [m]			
				6.10	$ $ \wedge $ $ \rangle $ $				4
			2.00	6.15					+
				6.20	270°	30			╉
		Ĕ੶੶ਫ਼੶ਫ਼੶ਫ਼੶ਫ਼੶		6.25					Ħ
				6.30 6.25					
				0.30 6.40					
				6.45	180°	180° Counts Dip[dea] Azi[dea]			
		5:=::::		6.50	Lounts Dip[deg] Azi[deg] Mean 31 1.87 238.80	Mean 0 0.00 0.00			4
		, ~ , ~ , ~ , ~ , ~ , ~ , ~ , ~		6.55				5 7 7	2 Q T
0 API 300	0° 90° 180° 270° 0'	0° 90° 180° 270° 0°	180°	1 m 10 m	Wulf Pict - LH- GSAal hew	Wulff Plct - LH - GSAailnew	ó	sir yor ry poor	bot
<u> </u>									
GAM(NAT)	ATV IMAGE MN	FEATURE DIP & AZ MN	3D ATV + INTERP PLANES	Depth	BEDDING POLAR PLOT M	FRACTURE POLAR PLOT MN	FRACT/M	RQD	
		•					F	- age	: 1

			47.00				
			17.00				
		2. Contractions	17.05				
			17.10				
			17.15				
		The second second second second second second second second second second second second second second second s					
		and the second se	17.20				
\vdash			17.25				
			17.30				
		A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF	47.05				
			17.55				
			17.40				
			17.45				
			17.50				
			1100				
			17.55				
			17.60				
			17.65				
			47 70				
			17.70				
			17.75				
			17.80				
			17.85				
			17.90				
	Sector inst 11 Alline instant		17.95				
			18.00				
	Mana ana ang Ping Ang Ang Ang Ang Ang Ang Ang Ang Ang A	N Change	18.05				
			10.05				
			18.10				
			18.15				
	General States		18.20				
			40.05				
			10.23				
			18.30				
			18.35				
			18.40				
		i de la companya de la	40.45				
			10.43				
			18.50	Depth: 17.50 [m] to 20.00 [m]	Wulff Plot - LH - GSAalinew		
			18.55	0°	Depth: 17.50 [m] to 20.00 [m]		
			18.60				
	See Ste		40.07				
		(Cause	10.03				
	7AM IN THE REAL PROPERTY OF		18.70				
\vdash			18.75	2/10 60 90°	270°		
	No.		18.80				
			10 OF		$ \land \land \land \land \land \land \land \land \land \land \land \land \land \land \land \land \land \land \land$		
	net and the second		10.03				
			18.90		180°		
			18.95	160° Counts Dis[deal Azifdeal	Counts Dip[deg] Azi[deg]		
		A Stranger	19.00	Mean 9 2.07 321.79	Mean 0 0.00 0.00		
			40.05	9 2.07 321.79			
			19.05				
			19.10				
			19.15				
			19.20				
			19.25				
			19.30				
	0° 90° 180° 270° 0'					0.5	Goor Fair Poor Very
0 API 300	0 45000	0* 90* 180* 270* 0* 180*	1 m:10 m	Wulf Pict - LH- GSAalhew	Wulf Pict - LH- GSAailnew		poor
	4000						
GAM(NAT)	ATV IMAGE MN	FEATURE DIP & AZ MN 3D ATV + INTERP PLANES	Depth	BEDDING POLAR PLOT M	FRACTURE POLAR PLOT MN	FRACT/M	RQD

Appendix F

Laboratory Test Results

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

CERTIFICATE OF ANALYSIS 352830

Client Details	
Client	Douglas Partners Pty Ltd
Attention	Luke James-Hall
Address	96 Hermitage Rd, West Ryde, NSW, 2114

Sample Details	
Your Reference	228571.00 Liverpool
Number of Samples	3 Water
Date samples received	31/05/2024
Date completed instructions received	31/05/2024

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Please refer to the last page of this report for any comments relating to the results.

Report Details				
Date results requested by	07/06/2024			
Date of Issue	07/06/2024			
NATA Accreditation Number 2901. This document shall not be reproduced except in full.				
Accredited for compliance with ISO/IEC 17025 - Testing. Tests not covered by NATA are denoted with *				

Results Approved By

Diego Bigolin, Inorganics Supervisor Dragana Tomas, Senior Chemist Giovanni Agosti, Group Technical Manager Sean McAlary, Chemist (FAS) Tabitha Roberts, Chemist <u>Authorised By</u> Nancy Zhang, Laboratory Manager

VOCs in water				
Our Reference		352830-1	352830-2	352830-3
Your Reference	UNITS	BH301	BH304	BH405
Date Sampled		30/05/2024	30/05/2024	30/05/2024
Type of sample		Water	Water	Water
Date Extracted	-	03/06/2024	03/06/2024	03/06/2024
Date Analysed	-	04/06/2024	04/06/2024	04/06/2024
Dichlorodifluoromethane	μg/L	<10	<10	<10
Chloromethane	µg/L	<10	<10	<10
Vinyl Chloride	μg/L	<10	<10	<10
Bromomethane	μg/L	<10	<10	<10
Chloroethane	μg/L	<10	<10	<10
Trichlorofluoromethane	μg/L	<10	<10	<10
1,1-Dichloroethene	µg/L	<1	<1	<1
Trans-1,2-dichloroethene	μg/L	<1	<1	<1
1,1-dichloroethane	μg/L	<1	<1	<1
Cis-1,2-dichloroethene	μg/L	<1	<1	<1
Bromochloromethane	µg/L	<1	<1	<1
Chloroform	μg/L	1	4	<1
2,2-dichloropropane	μg/L	<1	<1	<1
1,2-dichloroethane	µg/L	<1	<1	<1
1,1,1-trichloroethane	μg/L	<1	<1	<1
1,1-dichloropropene	μg/L	<1	<1	<1
Cyclohexane	μg/L	<1	<1	<1
Carbon tetrachloride	µg/L	<1	<1	<1
Benzene	μg/L	<1	<1	<1
Dibromomethane	μg/L	<1	<1	<1
1,2-dichloropropane	μg/L	<1	<1	<1
Trichloroethene	μg/L	<1	<1	<1
Bromodichloromethane	μg/L	<1	<1	<1
trans-1,3-dichloropropene	μg/L	<1	<1	<1
cis-1,3-dichloropropene	μg/L	<1	<1	<1
1,1,2-trichloroethane	μg/L	<1	<1	<1
Toluene	μg/L	<1	<1	<1
1,3-dichloropropane	μg/L	<1	<1	<1
Dibromochloromethane	µg/L	<1	<1	<1
1,2-dibromoethane	μg/L	<1	<1	<1
Tetrachloroethene	μg/L	<1	<1	<1
1,1,1,2-tetrachloroethane	μg/L	<1	<1	<1
Chlorobenzene	μg/L	<1	<1	<1
Ethylbenzene	μg/L	<1	<1	<1

Client Reference: 228571.00 Liverpool

VOCs in water				
Our Reference		352830-1	352830-2	352830-3
Your Reference	UNITS	BH301	BH304	BH405
Date Sampled		30/05/2024	30/05/2024	30/05/2024
Type of sample		Water	Water	Water
Bromoform	μg/L	<1	<1	<1
m+p-xylene	µg/L	<2	<2	<2
Styrene	µg/L	<1	<1	<1
1,1,2,2-tetrachloroethane	μg/L	<1	<1	<1
o-xylene	µg/L	<1	<1	<1
1,2,3-trichloropropane	µg/L	<1	<1	<1
Isopropylbenzene	µg/L	<1	<1	<1
Bromobenzene	µg/L	<1	<1	<1
n-propyl benzene	µg/L	<1	<1	<1
2-chlorotoluene	µg/L	<1	<1	<1
4-chlorotoluene	µg/L	<1	<1	<1
1,3,5-trimethyl benzene	µg/L	<1	<1	<1
Tert-butyl benzene	µg/L	<1	<1	<1
1,2,4-trimethyl benzene	µg/L	<1	<1	<1
1,3-dichlorobenzene	µg/L	<1	<1	<1
Sec-butyl benzene	μg/L	<1	<1	<1
1,4-dichlorobenzene	μg/L	<1	<1	<1
4-isopropyl toluene	µg/L	<1	<1	<1
1,2-dichlorobenzene	μg/L	<1	<1	<1
n-butyl benzene	µg/L	<1	<1	<1
1,2-dibromo-3-chloropropane	μg/L	<1	<1	<1
1,2,4-trichlorobenzene	µg/L	<1	<1	<1
Hexachlorobutadiene	μg/L	<1	<1	<1
1,2,3-trichlorobenzene	μg/L	<1	<1	<1
Surrogate Dibromofluoromethane	%	100	102	100
Surrogate Toluene-d8	%	98	98	97
Surrogate 4-Bromofluorobenzene	%	93	93	94
vTRH(C6-C10)/BTEXN in Water				
---	-------	------------	------------	------------
Our Reference		352830-1	352830-2	352830-3
Your Reference	UNITS	BH301	BH304	BH405
Date Sampled		30/05/2024	30/05/2024	30/05/2024
Type of sample		Water	Water	Water
Date extracted	-	03/06/2024	03/06/2024	03/06/2024
Date analysed	-	04/06/2024	04/06/2024	04/06/2024
TRH C ₆ - C ₉	μg/L	<10	<10	<10
TRH C ₆ - C ₁₀	µg/L	<10	<10	<10
TRH C ₆ - C ₁₀ less BTEX (F1)	μg/L	<10	<10	<10
Benzene	µg/L	<1	<1	<1
Toluene	μg/L	<1	<1	<1
Ethylbenzene	µg/L	<1	<1	<1
m+p-xylene	μg/L	<2	<2	<2
o-xylene	μg/L	<1	<1	<1
Naphthalene	μg/L	<1	<1	<1
Surrogate Dibromofluoromethane	%	100	102	100
Surrogate Toluene-d8	%	98	98	97
Surrogate 4-Bromofluorobenzene	%	93	93	94

svTRH (C10-C40) in Water				
Our Reference		352830-1	352830-2	352830-3
Your Reference	UNITS	BH301	BH304	BH405
Date Sampled		30/05/2024	30/05/2024	30/05/2024
Type of sample		Water	Water	Water
Date extracted	-	03/06/2024	03/06/2024	03/06/2024
Date analysed	-	04/06/2024	04/06/2024	04/06/2024
TRH C ₁₀ - C ₁₄	µg/L	<50	<50	<50
TRH C ₁₅ - C ₂₈	µg/L	<100	<100	<100
TRH C ₂₉ - C ₃₆	µg/L	<100	<100	<100
Total +ve TRH (C10-C36)	µg/L	<50	<50	<50
TRH >C10 - C16	µg/L	<50	<50	<50
TRH >C ₁₀ - C ₁₆ less Naphthalene (F2)	µg/L	<50	<50	<50
TRH >C ₁₆ - C ₃₄	µg/L	<100	<100	<100
TRH >C ₃₄ - C ₄₀	µg/L	<100	<100	<100
Total +ve TRH (>C10-C40)	µg/L	<50	<50	<50
Surrogate o-Terphenyl	%	80	86	84

PAHs in Water				
Our Reference		352830-1	352830-2	352830-3
Your Reference	UNITS	BH301	BH304	BH405
Date Sampled		30/05/2024	30/05/2024	30/05/2024
Type of sample		Water	Water	Water
Date extracted	-	03/06/2024	03/06/2024	03/06/2024
Date analysed	-	04/06/2024	04/06/2024	04/06/2024
Naphthalene	μg/L	<0.1	<0.1	<0.1
Acenaphthylene	μg/L	<0.1	<0.1	<0.1
Acenaphthene	μg/L	<0.1	<0.1	<0.1
Fluorene	µg/L	<0.1	<0.1	<0.1
Phenanthrene	µg/L	<0.1	<0.1	<0.1
Anthracene	µg/L	<0.1	<0.1	<0.1
Fluoranthene	µg/L	<0.1	<0.1	<0.1
Pyrene	µg/L	<0.1	<0.1	<0.1
Benzo(a)anthracene	µg/L	<0.1	<0.1	<0.1
Chrysene	µg/L	<0.1	<0.1	<0.1
Benzo(b,j+k)fluoranthene	µg/L	<0.2	<0.2	<0.2
Benzo(a)pyrene	µg/L	<0.1	<0.1	<0.1
Indeno(1,2,3-c,d)pyrene	µg/L	<0.1	<0.1	<0.1
Dibenzo(a,h)anthracene	µg/L	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	µg/L	<0.1	<0.1	<0.1
Benzo(a)pyrene TEQ	µg/L	<0.5	<0.5	<0.5
Total +ve PAH's	µg/L	<0.1	<0.1	<0.1
Surrogate p-Terphenyl-d14	%	76	86	78

OCPs in Water - Trace Level				
Our Reference		352830-1	352830-2	352830-3
Your Reference	UNITS	BH301	BH304	BH405
Date Sampled		30/05/2024	30/05/2024	30/05/2024
Type of sample		Water	Water	Water
Date extracted	-	03/06/2024	03/06/2024	03/06/2024
Date analysed	-	04/06/2024	04/06/2024	04/06/2024
alpha-BHC	µg/L	<0.001	<0.001	<0.001
НСВ	µg/L	<0.001	<0.001	<0.001
beta-BHC	µg/L	<0.001	<0.001	<0.001
gamma-BHC	µg/L	<0.001	<0.001	<0.001
Heptachlor	µg/L	<0.001	<0.001	<0.001
delta-BHC	µg/L	<0.001	<0.001	<0.001
Aldrin	µg/L	<0.001	<0.001	<0.001
Heptachlor Epoxide	µg/L	<0.001	<0.001	<0.001
gamma-Chlordane	µg/L	<0.001	<0.001	<0.001
alpha-Chlordane	µg/L	<0.001	<0.001	<0.001
Endosulfan I	µg/L	<0.002	<0.002	<0.002
pp-DDE	µg/L	<0.001	<0.001	<0.001
Dieldrin	µg/L	<0.001	<0.001	<0.001
Endrin	µg/L	<0.001	<0.001	<0.001
Endosulfan II	µg/L	<0.002	<0.002	<0.002
pp-DDD	µg/L	<0.001	<0.001	<0.001
Endrin Aldehyde	µg/L	<0.001	<0.001	<0.001
pp-DDT	µg/L	<0.001	<0.001	<0.001
Endosulfan Sulphate	µg/L	<0.001	<0.001	<0.001
Methoxychlor	µg/L	<0.001	<0.001	<0.001
Surrogate 4-Chloro-3-NBTF	%	79	89	80

OP in water LL ANZECCF/ADWG				
Our Reference		352830-1	352830-2	352830-3
Your Reference	UNITS	BH301	BH304	BH405
Date Sampled		30/05/2024	30/05/2024	30/05/2024
Type of sample		Water	Water	Water
Date extracted	-	03/06/2024	03/06/2024	03/06/2024
Date analysed	-	04/06/2024	04/06/2024	04/06/2024
Dichlorvos	μg/L	<0.05	<0.05	<0.05
Mevinphos	μg/L	<0.05	<0.05	<0.05
Phorate	μg/L	<0.05	<0.05	<0.05
Dimethoate	µg/L	<0.1	<0.1	<0.1
Diazinon	µg/L	<0.01	<0.01	<0.01
Disulfoton	µg/L	<0.05	<0.05	<0.05
Chlorpyriphos-methyl	µg/L	<0.05	<0.05	<0.05
Parathion-Methyl	µg/L	<0.05	<0.05	<0.05
Ronnel	µg/L	<0.05	<0.05	<0.05
Fenitrothion	µg/L	<0.05	<0.05	<0.05
Malathion	µg/L	<0.05	<0.05	<0.05
Chlorpyriphos	µg/L	<0.009	<0.009	<0.009
Fenthion	µg/L	<0.05	<0.05	<0.05
Parathion	µg/L	<0.004	<0.004	<0.004
Bromophos ethyl	μg/L	<0.05	<0.05	<0.05
Methidathion	µg/L	<0.05	<0.05	<0.05
Fenamiphos	µg/L	<0.05	<0.05	<0.05
Ethion	µg/L	<0.05	<0.05	<0.05
Phosalone	µg/L	<0.05	<0.05	<0.05
Azinphos-methyl (Guthion)	µg/L	<0.02	<0.02	<0.02
Coumaphos	µg/L	<0.05	<0.05	<0.05
Surrogate 4-Chloro-3-NBTF	%	79	89	80

PCBs in Water - Trace Level				
Our Reference		352830-1	352830-2	352830-3
Your Reference	UNITS	BH301	BH304	BH405
Date Sampled		30/05/2024	30/05/2024	30/05/2024
Type of sample		Water	Water	Water
Date extracted	-	03/06/2024	03/06/2024	03/06/2024
Date analysed	-	04/06/2024	04/06/2024	04/06/2024
Aroclor 1016	µg/L	<0.01	<0.01	<0.01
Aroclor 1221	µg/L	<0.01	<0.01	<0.01
Aroclor 1232	µg/L	<0.01	<0.01	<0.01
Aroclor 1242	µg/L	<0.01	<0.01	<0.01
Aroclor 1248	µg/L	<0.01	<0.01	<0.01
Aroclor 1254	µg/L	<0.01	<0.01	<0.01
Aroclor 1260	µg/L	<0.01	<0.01	<0.01
Surrogate TCMX	%	83	90	85

Total Phenolics in Water				
Our Reference		352830-1	352830-2	352830-3
Your Reference	UNITS	BH301	BH304	BH405
Date Sampled		30/05/2024	30/05/2024	30/05/2024
Type of sample		Water	Water	Water
Date extracted	-	04/06/2024	04/06/2024	04/06/2024
Date analysed	-	04/06/2024	04/06/2024	04/06/2024
Total Phenolics (as Phenol)	mg/L	<0.05	<0.05	<0.05

HM in water - dissolved				_
Our Reference		352830-1	352830-2	352830-3
Your Reference	UNITS	BH301	BH304	BH405
Date Sampled		30/05/2024	30/05/2024	30/05/2024
Type of sample		Water	Water	Water
Date prepared	-	04/06/2024	04/06/2024	04/06/2024
Date analysed	-	04/06/2024	04/06/2024	04/06/2024
Arsenic-Dissolved	µg/L	7	1	3
Cadmium-Dissolved	µg/L	<0.1	<0.1	<0.1
Chromium-Dissolved	μg/L	<1	<1	<1
Copper-Dissolved	µg/L	3	11	7
Lead-Dissolved	µg/L	<1	10	<1
Mercury-Dissolved	µg/L	<0.05	<0.05	<0.05
Nickel-Dissolved	μg/L	6	50	24
Zinc-Dissolved	µg/L	6	34	100

Miscellaneous Inorganics				
Our Reference		352830-1	352830-2	352830-3
Your Reference	UNITS	BH301	BH304	BH405
Date Sampled		30/05/2024	30/05/2024	30/05/2024
Type of sample		Water	Water	Water
Date prepared	-	06/06/2024	06/06/2024	06/06/2024
Date analysed	-	06/06/2024	06/06/2024	06/06/2024
Total Suspended Solids	mg/L	180	97	62
Total Dissolved Solids (grav)	mg/L	2,000	3,700	2,600

PFAS in Water TRACE Short				
Our Reference		352830-1	352830-2	352830-3
Your Reference	UNITS	BH301	BH304	BH405
Date Sampled		30/05/2024	30/05/2024	30/05/2024
Type of sample		Water	Water	Water
Date prepared	-	05/06/2024	05/06/2024	05/06/2024
Date analysed	-	05/06/2024	05/06/2024	05/06/2024
Perfluorohexanesulfonic acid - PFHxS	μg/L	0.0002	<0.0002	0.0002
Perfluorooctanesulfonic acid PFOS	µg/L	0.0005	0.0002	0.0004
Perfluorooctanoic acid PFOA	µg/L	0.001	0.0007	<0.0002
6:2 FTS	µg/L	0.003	0.0005	0.003
8:2 FTS	µg/L	<0.0004	<0.0004	<0.0004
Surrogate ¹³ C ₈ PFOS	%	98	97	100
Surrogate ¹³ C ₂ PFOA	%	109	107	106
Extracted ISTD ¹⁸ O ₂ PFHxS	%	94	91	94
Extracted ISTD ¹³ C ₄ PFOS	%	83	76	77
Extracted ISTD ¹³ C ₄ PFOA	%	97	108	109
Extracted ISTD ¹³ C ₂ 6:2FTS	%	#	#	#
Extracted ISTD ¹³ C ₂ 8:2FTS	%	#	185	#
Total Positive PFHxS & PFOS	μg/L	0.0007	0.0002	0.0006
Total Positive PFOS & PFOA	µg/L	0.002	0.0009	0.0004
Total Positive PFAS	µg/L	0.0045	0.001	0.0032

Cations in water Dissolved				
Our Reference		352830-1	352830-2	352830-3
Your Reference	UNITS	BH301	BH304	BH405
Date Sampled		30/05/2024	30/05/2024	30/05/2024
Type of sample		Water	Water	Water
Date digested	-	04/06/2024	04/06/2024	04/06/2024
Date analysed	-	04/06/2024	04/06/2024	04/06/2024
Calcium - Dissolved	mg/L	20	74	28
Magnesium - Dissolved	mg/L	46	130	65
Hardness (calc) equivalent CaCO ₃	mg/L	240	700	340

Method ID	Methodology Summary
Inorg-018	Total Dissolved Solids - determined gravimetrically. The solids are dried at 180+/-10°C.
	NOTE: Where the EC of the sample is <100µS/cm, the TDS will typically be below 70mg/L (as the sample is very likely to be at least drinking water quality). Therefore to ensure data quality for TDS, the TDS is typically calculated as per the equation below:-
	TDS = EC * 0.6
Inorg-019	Suspended Solids - determined gravimetricially by filtration of the sample. The samples are dried at 104+/-5°C.
Inorg-031	Total Phenolics by segmented flow analyser (in line distillation with colourimetric finish). Solids are extracted in a caustic media prior to analysis.
Metals-020	Determination of various metals by ICP-AES.
Metals-021	Determination of Mercury by Cold Vapour AAS.
Metals-022	Determination of various metals by ICP-MS.
	Please note for Bromine and Iodine, any forms of these elements that are present are included together in the one result reported for each of these two elements.
	Salt forms (e.g. FeO, PbO, ZnO) are determined stoichiometrically from the base metal concentration.
Org-020	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID. F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
Org-021/022/025	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-ECD and/or GC-MS/GC-MSMS.
Org-022/025	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS/GC-MSMS.
Org-022/025	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS/GC- MSMS. Benzo(a)pyrene TEQ as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater - 2013.
Org-023	Water samples are analysed directly by purge and trap GC-MS.
Org-023	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater.

Method ID	Methodology Summary
Org-029	Soil samples are extracted with basified Methanol. Waters and soil extracts are directly injected and/or concentrated/extracted using SPE. TCLPs/ASLP leachates are centrifuged, the supernatant is then analysed (including amendment with solvent) - as per the option in AS4439.3.
	Analysis is undertaken with LC-MS/MS.
	PFAS results include the sum of branched and linear isomers where applicable.
	Please note that PFAS results are corrected for Extracted Internal Standards (QSM 5.4 Table B-15 terminology), which are mass labelled analytes added prior to sample preparation to assess matrix effects and verify processing of the sample. PFAS analytes without a commercially available mass labelled analogue are corrected vs a closely eluting mass labelled PFAS compound. Surrogates are also reported, in this context they are mass labelled PFAS compounds added prior to extraction but are used as monitoring compounds only (not used for result correction). Envicarb (or similar) is used discretionally to remove interfering matrix components.
	Please contact the laboratory if estimates of Measurement Uncertainty are required as per WA DER.

QUALITY CONTROL: VOCs in water						Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W2	[NT]
Date Extracted	-			03/06/2024	1	03/06/2024	04/06/2024		03/06/2024	[NT]
Date Analysed	-			04/06/2024	1	04/06/2024	05/06/2024		04/06/2024	[NT]
Dichlorodifluoromethane	μg/L	10	Org-023	<10	1	<10	<10	0	[NT]	[NT]
Chloromethane	µg/L	10	Org-023	<10	1	<10	<10	0	[NT]	[NT]
Vinyl Chloride	µg/L	10	Org-023	<10	1	<10	<10	0	[NT]	[NT]
Bromomethane	µg/L	10	Org-023	<10	1	<10	<10	0	[NT]	[NT]
Chloroethane	µg/L	10	Org-023	<10	1	<10	<10	0	[NT]	[NT]
Trichlorofluoromethane	µg/L	10	Org-023	<10	1	<10	<10	0	[NT]	[NT]
1,1-Dichloroethene	µg/L	1	Org-023	<1	1	<1	<1	0	[NT]	[NT]
Trans-1,2-dichloroethene	µg/L	1	Org-023	<1	1	<1	<1	0	[NT]	[NT]
1,1-dichloroethane	µg/L	1	Org-023	<1	1	<1	<1	0	100	[NT]
Cis-1,2-dichloroethene	µg/L	1	Org-023	<1	1	<1	<1	0	[NT]	[NT]
Bromochloromethane	µg/L	1	Org-023	<1	1	<1	<1	0	[NT]	[NT]
Chloroform	µg/L	1	Org-023	<1	1	1	1	0	100	[NT]
2,2-dichloropropane	µg/L	1	Org-023	<1	1	<1	<1	0	[NT]	[NT]
1,2-dichloroethane	µg/L	1	Org-023	<1	1	<1	<1	0	104	[NT]
1,1,1-trichloroethane	µg/L	1	Org-023	<1	1	<1	<1	0	96	[NT]
1,1-dichloropropene	µg/L	1	Org-023	<1	1	<1	<1	0	[NT]	[NT]
Cyclohexane	µg/L	1	Org-023	<1	1	<1	<1	0	[NT]	[NT]
Carbon tetrachloride	µg/L	1	Org-023	<1	1	<1	<1	0	[NT]	[NT]
Benzene	µg/L	1	Org-023	<1	1	<1	<1	0	101	[NT]
Dibromomethane	µg/L	1	Org-023	<1	1	<1	<1	0	[NT]	[NT]
1,2-dichloropropane	µg/L	1	Org-023	<1	1	<1	<1	0	[NT]	[NT]
Trichloroethene	µg/L	1	Org-023	<1	1	<1	<1	0	104	[NT]
Bromodichloromethane	µg/L	1	Org-023	<1	1	<1	<1	0	98	[NT]
trans-1,3-dichloropropene	µg/L	1	Org-023	<1	1	<1	<1	0	[NT]	[NT]
cis-1,3-dichloropropene	µg/L	1	Org-023	<1	1	<1	<1	0	[NT]	[NT]
1,1,2-trichloroethane	µg/L	1	Org-023	<1	1	<1	<1	0	[NT]	[NT]
Toluene	µg/L	1	Org-023	<1	1	<1	<1	0	99	[NT]
1,3-dichloropropane	µg/L	1	Org-023	<1	1	<1	<1	0	[NT]	[NT]
Dibromochloromethane	µg/L	1	Org-023	<1	1	<1	<1	0	94	[NT]
1,2-dibromoethane	µg/L	1	Org-023	<1	1	<1	<1	0	[NT]	[NT]
Tetrachloroethene	µg/L	1	Org-023	<1	1	<1	<1	0	97	[NT]
1,1,1,2-tetrachloroethane	µg/L	1	Org-023	<1	1	<1	<1	0	[NT]	[NT]
Chlorobenzene	µg/L	1	Org-023	<1	1	<1	<1	0	[NT]	[NT]
Ethylbenzene	µg/L	1	Org-023	<1	1	<1	<1	0	98	[NT]
Bromoform	µg/L	1	Org-023	<1	1	<1	<1	0	[NT]	[NT]
m+p-xylene	µg/L	2	Org-023	<2	1	<2	<2	0	97	[NT]
Styrene	µg/L	1	Org-023	<1	1	<1	<1	0	[NT]	[NT]
1,1,2,2-tetrachloroethane	µg/L	1	Org-023	<1	1	<1	<1	0	[NT]	[NT]

QUALIT	Y CONTROL	.: VOCs i	n water			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W2	[NT]
o-xylene	μg/L	1	Org-023	<1	1	<1	<1	0	98	[NT]
1,2,3-trichloropropane	μg/L	1	Org-023	<1	1	<1	<1	0	[NT]	[NT]
Isopropylbenzene	μg/L	1	Org-023	<1	1	<1	<1	0	[NT]	[NT]
Bromobenzene	μg/L	1	Org-023	<1	1	<1	<1	0	[NT]	[NT]
n-propyl benzene	μg/L	1	Org-023	<1	1	<1	<1	0	[NT]	[NT]
2-chlorotoluene	µg/L	1	Org-023	<1	1	<1	<1	0	[NT]	[NT]
4-chlorotoluene	µg/L	1	Org-023	<1	1	<1	<1	0	[NT]	[NT]
1,3,5-trimethyl benzene	µg/L	1	Org-023	<1	1	<1	<1	0	[NT]	[NT]
Tert-butyl benzene	µg/L	1	Org-023	<1	1	<1	<1	0	[NT]	[NT]
1,2,4-trimethyl benzene	µg/L	1	Org-023	<1	1	<1	<1	0	[NT]	[NT]
1,3-dichlorobenzene	µg/L	1	Org-023	<1	1	<1	<1	0	[NT]	[NT]
Sec-butyl benzene	µg/L	1	Org-023	<1	1	<1	<1	0	[NT]	[NT]
1,4-dichlorobenzene	µg/L	1	Org-023	<1	1	<1	<1	0	[NT]	[NT]
4-isopropyl toluene	µg/L	1	Org-023	<1	1	<1	<1	0	[NT]	[NT]
1,2-dichlorobenzene	µg/L	1	Org-023	<1	1	<1	<1	0	[NT]	[NT]
n-butyl benzene	μg/L	1	Org-023	<1	1	<1	<1	0	[NT]	[NT]
1,2-dibromo-3-chloropropane	µg/L	1	Org-023	<1	1	<1	<1	0	[NT]	[NT]
1,2,4-trichlorobenzene	μg/L	1	Org-023	<1	1	<1	<1	0	[NT]	[NT]
Hexachlorobutadiene	μg/L	1	Org-023	<1	1	<1	<1	0	[NT]	[NT]
1,2,3-trichlorobenzene	μg/L	1	Org-023	<1	1	<1	<1	0	[NT]	[NT]
Surrogate Dibromofluoromethane	%		Org-023	99	1	100	96	4	100	[NT]
Surrogate Toluene-d8	%		Org-023	98	1	98	100	2	99	INTI
Surrogate 4-Bromofluorobenzene	%		Org-023	96	1	93	94	1	97	INTI
	,,,		019-020		'				51	[izi]

QUALITY CONTR	QUALITY CONTROL: vTRH(C6-C10)/BTEXN in Water							Duplicate				
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W2	[NT]		
Date extracted	-			03/06/2024	1	03/06/2024	04/06/2024		03/06/2024			
Date analysed	-			04/06/2024	1	04/06/2024	05/06/2024		04/06/2024			
TRH C ₆ - C ₉	µg/L	10	Org-023	<10	1	<10	<10	0	98			
TRH C ₆ - C ₁₀	µg/L	10	Org-023	<10	1	<10	<10	0	98			
Benzene	µg/L	1	Org-023	<1	1	<1	<1	0	101			
Toluene	µg/L	1	Org-023	<1	1	<1	<1	0	99			
Ethylbenzene	µg/L	1	Org-023	<1	1	<1	<1	0	98			
m+p-xylene	µg/L	2	Org-023	<2	1	<2	<2	0	97			
o-xylene	µg/L	1	Org-023	<1	1	<1	<1	0	98			
Naphthalene	µg/L	1	Org-023	<1	1	<1	<1	0	[NT]			
Surrogate Dibromofluoromethane	%		Org-023	99	1	100	96	4	100			
Surrogate Toluene-d8	%		Org-023	98	1	98	100	2	99			
Surrogate 4-Bromofluorobenzene	%		Org-023	96	1	93	94	1	97			

QUALITY CON	QUALITY CONTROL: svTRH (C10-C40) in Water							Duplicate Spike Reo				
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W3	[NT]		
Date extracted	-			03/06/2024	[NT]		[NT]	[NT]	03/06/2024			
Date analysed	-			03/06/2024	[NT]		[NT]	[NT]	03/06/2024			
TRH C ₁₀ - C ₁₄	µg/L	50	Org-020	<50	[NT]		[NT]	[NT]	114			
TRH C ₁₅ - C ₂₈	µg/L	100	Org-020	<100	[NT]		[NT]	[NT]	116			
TRH C ₂₉ - C ₃₆	µg/L	100	Org-020	<100	[NT]		[NT]	[NT]	100			
TRH >C ₁₀ - C ₁₆	µg/L	50	Org-020	<50	[NT]		[NT]	[NT]	114			
TRH >C ₁₆ - C ₃₄	µg/L	100	Org-020	<100	[NT]		[NT]	[NT]	116			
TRH >C ₃₄ - C ₄₀	µg/L	100	Org-020	<100	[NT]		[NT]	[NT]	100			
Surrogate o-Terphenyl	%		Org-020	114	[NT]	[NT]	[NT]	[NT]	104	[NT]		

QUALITY		Duplicate Spike Reco								
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W2	[NT]
Date extracted	-			03/06/2024	[NT]		[NT]	[NT]	03/06/2024	
Date analysed	-			04/06/2024	[NT]		[NT]	[NT]	04/06/2024	
Naphthalene	μg/L	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	90	
Acenaphthylene	µg/L	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
Acenaphthene	μg/L	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	87	
Fluorene	µg/L	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	88	
Phenanthrene	µg/L	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	83	
Anthracene	µg/L	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
Fluoranthene	µg/L	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	86	
Pyrene	µg/L	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	93	
Benzo(a)anthracene	µg/L	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
Chrysene	µg/L	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	76	
Benzo(b,j+k)fluoranthene	µg/L	0.2	Org-022/025	<0.2	[NT]		[NT]	[NT]	[NT]	
Benzo(a)pyrene	µg/L	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	88	
Indeno(1,2,3-c,d)pyrene	µg/L	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
Dibenzo(a,h)anthracene	µg/L	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
Benzo(g,h,i)perylene	µg/L	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
Surrogate p-Terphenyl-d14	%		Org-022/025	83	[NT]	[NT]	[NT]	[NT]	81	[NT]

QUALITY CON	TROL: OCPs	s in Wate	r - Trace Level			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W2	[NT]
Date extracted	-			03/06/2024	[NT]		[NT]	[NT]	03/06/2024	
Date analysed	-			04/06/2024	[NT]		[NT]	[NT]	04/06/2024	
alpha-BHC	µg/L	0.001	Org-022/025	<0.001	[NT]		[NT]	[NT]	81	
НСВ	µg/L	0.001	Org-022/025	<0.001	[NT]		[NT]	[NT]	[NT]	
beta-BHC	µg/L	0.001	Org-022/025	<0.001	[NT]		[NT]	[NT]	80	
gamma-BHC	µg/L	0.001	Org-022/025	<0.001	[NT]		[NT]	[NT]	[NT]	
Heptachlor	µg/L	0.001	Org-022/025	<0.001	[NT]		[NT]	[NT]	82	
delta-BHC	µg/L	0.001	Org-022/025	<0.001	[NT]		[NT]	[NT]	[NT]	
Aldrin	µg/L	0.001	Org-022/025	<0.001	[NT]		[NT]	[NT]	80	
Heptachlor Epoxide	µg/L	0.001	Org-022/025	<0.001	[NT]		[NT]	[NT]	86	
gamma-Chlordane	µg/L	0.001	Org-022/025	<0.001	[NT]		[NT]	[NT]	[NT]	
alpha-Chlordane	µg/L	0.001	Org-022/025	<0.001	[NT]		[NT]	[NT]	[NT]	
Endosulfan I	µg/L	0.002	Org-022/025	<0.002	[NT]		[NT]	[NT]	[NT]	
pp-DDE	µg/L	0.001	Org-022/025	<0.001	[NT]		[NT]	[NT]	82	
Dieldrin	µg/L	0.001	Org-022/025	<0.001	[NT]		[NT]	[NT]	90	
Endrin	µg/L	0.001	Org-022/025	<0.001	[NT]		[NT]	[NT]	86	
Endosulfan II	µg/L	0.002	Org-022/025	<0.002	[NT]		[NT]	[NT]	[NT]	
pp-DDD	µg/L	0.001	Org-022/025	<0.001	[NT]		[NT]	[NT]	76	
Endrin Aldehyde	µg/L	0.001	Org-022/025	<0.001	[NT]		[NT]	[NT]	[NT]	
pp-DDT	µg/L	0.001	Org-022/025	<0.001	[NT]		[NT]	[NT]	[NT]	
Endosulfan Sulphate	µg/L	0.001	Org-022/025	<0.001	[NT]		[NT]	[NT]	81	
Methoxychlor	µg/L	0.001	Org-022/025	<0.001	[NT]		[NT]	[NT]	[NT]	
Surrogate 4-Chloro-3-NBTF	%		Org-022/025	82	[NT]	[NT]	[NT]	[NT]	76	[NT]

QUALITY CONTR	OL: OP in w	ater LL A	NZECCF/ADWG			Dup	olicate		Spike Rec	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W2	[NT]
Date extracted	-			03/06/2024	[NT]	[NT]		[NT]	03/06/2024	
Date analysed	-			04/06/2024	[NT]	[NT]		[NT]	04/06/2024	
Dichlorvos	µg/L	0.05	Org-022/025	<0.05	[NT]	[NT]		[NT]	80	
Mevinphos	µg/L	0.05	Org-022/025	<0.05	[NT]	[NT]		[NT]	[NT]	
Phorate	µg/L	0.05	Org-022/025	<0.05	[NT]	[NT]		[NT]	[NT]	
Dimethoate	µg/L	0.1	Org-022/025	<0.1	[NT]	[NT]		[NT]	[NT]	
Diazinon	µg/L	0.01	Org-022/025	<0.01	[NT]	[NT]		[NT]	[NT]	
Disulfoton	µg/L	0.05	Org-022/025	<0.05	[NT]	[NT]		[NT]	[NT]	
Chlorpyriphos-methyl	µg/L	0.05	Org-022/025	<0.05	[NT]	[NT]		[NT]	[NT]	
Parathion-Methyl	µg/L	0.05	Org-022/025	<0.05	[NT]	[NT]		[NT]	[NT]	
Ronnel	µg/L	0.05	Org-022/025	<0.05	[NT]	[NT]		[NT]	73	
Fenitrothion	µg/L	0.05	Org-022/025	<0.05	[NT]	[NT]		[NT]	75	
Malathion	µg/L	0.05	Org-022/025	<0.05	[NT]	[NT]		[NT]	90	
Chlorpyriphos	µg/L	0.009	Org-022/025	<0.009	[NT]	[NT]		[NT]	89	
Fenthion	µg/L	0.05	Org-022/025	<0.05	[NT]	[NT]		[NT]	[NT]	
Parathion	µg/L	0.004	Org-022/025	<0.004	[NT]	[NT]		[NT]	77	
Bromophos ethyl	µg/L	0.05	Org-022/025	<0.05	[NT]	[NT]		[NT]	[NT]	
Methidathion	µg/L	0.05	Org-022/025	<0.05	[NT]	[NT]		[NT]	[NT]	
Fenamiphos	µg/L	0.05	Org-022/025	<0.05	[NT]	[NT]		[NT]	[NT]	
Ethion	µg/L	0.05	Org-022/025	<0.05	[NT]	[NT]		[NT]	75	
Phosalone	µg/L	0.05	Org-022/025	<0.05	[NT]	[NT]		[NT]	[NT]	
Azinphos-methyl (Guthion)	µg/L	0.02	Org-022/025	<0.02	[NT]	[NT]		[NT]	[NT]	
Coumaphos	µg/L	0.05	Org-022/025	<0.05	[NT]	[NT]		[NT]	[NT]	
Surrogate 4-Chloro-3-NBTF	%		Org-022/025	82	[NT]	[NT]		[NT]	76	

QUALITY CON			Du	plicate		Spike Recovery %				
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W2	[NT]
Date extracted	-			03/06/2024	[NT]		[NT]	[NT]	03/06/2024	
Date analysed	-			04/06/2024	[NT]		[NT]	[NT]	04/06/2024	
Aroclor 1016	µg/L	0.01	Org-021/022/025	<0.01	[NT]		[NT]	[NT]	[NT]	
Aroclor 1221	µg/L	0.01	Org-021/022/025	<0.01	[NT]		[NT]	[NT]	[NT]	
Aroclor 1232	µg/L	0.01	Org-021/022/025	<0.01	[NT]		[NT]	[NT]	[NT]	
Aroclor 1242	µg/L	0.01	Org-021/022/025	<0.01	[NT]		[NT]	[NT]	[NT]	
Aroclor 1248	µg/L	0.01	Org-021/022/025	<0.01	[NT]		[NT]	[NT]	[NT]	
Aroclor 1254	µg/L	0.01	Org-021/022/025	<0.01	[NT]		[NT]	[NT]	94	
Aroclor 1260	µg/L	0.01	Org-021/022/025	<0.01	[NT]		[NT]	[NT]	[NT]	
Surrogate TCMX	%		Org-021/022/025	85	[NT]		[NT]	[NT]	83	

QUALITY CO	NTROL: Tot	al Phenol	ics in Water		Duplicate				Spike Recovery %	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W2	[NT]
Date extracted	-			04/06/2024	1	04/06/2024	04/06/2024		04/06/2024	[NT]
Date analysed	-			04/06/2024	1	04/06/2024	04/06/2024		04/06/2024	[NT]
Total Phenolics (as Phenol)	mg/L	0.05	Inorg-031	<0.05	1	<0.05	<0.05	0	99	[NT]

QUALITY CC	QUALITY CONTROL: HM in water - dissolved							Duplicate			
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]	
Date prepared	-			04/06/2024	[NT]		[NT]	[NT]	04/06/2024	[NT]	
Date analysed	-			04/06/2024	[NT]		[NT]	[NT]	04/06/2024	[NT]	
Arsenic-Dissolved	µg/L	1	Metals-022	<1	[NT]		[NT]	[NT]	98	[NT]	
Cadmium-Dissolved	µg/L	0.1	Metals-022	<0.1	[NT]		[NT]	[NT]	96	[NT]	
Chromium-Dissolved	µg/L	1	Metals-022	<1	[NT]		[NT]	[NT]	97	[NT]	
Copper-Dissolved	µg/L	1	Metals-022	<1	[NT]		[NT]	[NT]	97	[NT]	
Lead-Dissolved	µg/L	1	Metals-022	<1	[NT]		[NT]	[NT]	98	[NT]	
Mercury-Dissolved	µg/L	0.05	Metals-021	<0.05	[NT]		[NT]	[NT]	109	[NT]	
Nickel-Dissolved	µg/L	1	Metals-022	<1	[NT]		[NT]	[NT]	97	[NT]	
Zinc-Dissolved	µg/L	1	Metals-022	<1	[NT]		[NT]	[NT]	98	[NT]	

QUALITY COI	NTROL: Mis	cellaneou	s Inorganics		Duplicate					Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]		
Date prepared	-			06/06/2024	[NT]		[NT]	[NT]	06/06/2024			
Date analysed	-			06/06/2024	[NT]		[NT]	[NT]	06/06/2024			
Total Suspended Solids	mg/L	5	Inorg-019	<5	[NT]		[NT]	[NT]	94			
Total Dissolved Solids (grav)	mg/L	5	Inorg-018	<5	[NT]		[NT]	[NT]	85			

QUALITY CONT	IROL: PFAS	in Water	TRACE Short			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]
Date prepared	-			05/06/2024	[NT]		[NT]	[NT]	05/06/2024	
Date analysed	-			05/06/2024	[NT]		[NT]	[NT]	05/06/2024	
Perfluorohexanesulfonic acid - PFHxS	µg/L	0.0002	Org-029	<0.0002	[NT]		[NT]	[NT]	100	
Perfluorooctanesulfonic acid PFOS	µg/L	0.0002	Org-029	<0.0002	[NT]		[NT]	[NT]	102	
Perfluorooctanoic acid PFOA	µg/L	0.0002	Org-029	<0.0002	[NT]		[NT]	[NT]	119	
6:2 FTS	µg/L	0.0004	Org-029	<0.0004	[NT]		[NT]	[NT]	96	
8:2 FTS	μg/L	0.0004	Org-029	<0.0004	[NT]		[NT]	[NT]	98	
Surrogate ¹³ C ₈ PFOS	%		Org-029	98	[NT]		[NT]	[NT]	96	
Surrogate ¹³ C ₂ PFOA	%		Org-029	88	[NT]		[NT]	[NT]	121	
Extracted ISTD ¹⁸ O ₂ PFHxS	%		Org-029	90	[NT]		[NT]	[NT]	89	
Extracted ISTD ¹³ C ₄ PFOS	%		Org-029	86	[NT]		[NT]	[NT]	86	
Extracted ISTD ¹³ C ₄ PFOA	%		Org-029	125	[NT]		[NT]	[NT]	99	
Extracted ISTD ¹³ C ₂ 6:2FTS	%		Org-029	192	[NT]		[NT]	[NT]	173	
Extracted ISTD ¹³ C ₂ 8:2FTS	%		Org-029	197	[NT]	[NT]	[NT]	[NT]	199	[NT]

QUALITY CONTROL: Cations in water Dissolved					Duplicate				Spike Recovery %	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	352830-2
Date digested	-			06/06/2024	1	04/06/2024	04/06/2024		06/06/2024	04/06/2024
Date analysed	-			06/06/2024	1	04/06/2024	04/06/2024		06/06/2024	04/06/2024
Calcium - Dissolved	mg/L	0.5	Metals-020	<0.5	1	20	21	5	105	113
Magnesium - Dissolved	mg/L	0.5	Metals-020	<0.5	1	46	47	2	102	104
Hardness (calc) equivalent CaCO ₃	mg/L	3	Metals-020	[NT]	1	240	240	0	[NT]	[NT]

Result Definitions					
NT	Not tested				
NA	Test not required				
INS	Insufficient sample for this test				
PQL	Practical Quantitation Limit				
<	Less than				
>	Greater than				
RPD	Relative Percent Difference				
LCS	Laboratory Control Sample				
NS	Not specified				
NEPM	National Environmental Protection Measure				
NR	Not Reported				

Quality Control Definitions					
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.				
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.				
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.				
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.				
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.				

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

The recommended maximums for analytes in urine are taken from "2018 TLVs and BEIs", as published by ACGIH (where available). Limit provided for Nickel is a precautionary guideline as per Position Paper prepared by AIOH Exposure Standards Committee, 2016.

Guideline limits for Rinse Water Quality reported as per analytical requirements and specifications of AS 4187, Amdt 2 2019, Table 7.2

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Where matrix spike recoveries fall below the lower limit of the acceptance criteria (e.g. for non-labile or standard Organics <60%), positive result(s) in the parent sample will subsequently have a higher than typical estimated uncertainty (MU estimates supplied on request) and in these circumstances the sample result is likely biased significantly low.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.

Report Comments

For PFAS Extracted Internal Standards denoted with # or outside the 50-150% acceptance range, the respective target analyte results may be unaffected, in other circumstances the PQL has been raised to accommodate the outlier(s).